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Robustness is the ability of the control system to tolerate uncertainties and variations, either internal 
or external. The ability of a system to handle external disturbances is evaluated by the effect of the 
disturbances on some sensitive outputs, like an optical sensor, or a structural load sensor. Well 
known sensitivity analysis tools are used to evaluate the system sensitivity between a certain inputs 
and outputs. The question is how do we analyze a system’s robustness to internal parameter 
variations? How much parameter variations can a system tolerate before it becomes unstable, or 
stops performing properly? Parameter uncertainties can be seen as imprecise knowledge of the plant 
model parameters, such as: the mass properties, moments of inertia, aerodynamic coefficients, 
vehicle altitude, dynamic pressure, center of gravity, etc. The uncertainties of a model are specified in 
terms of variations in the actual plant parameters, above or below their nominal values. These 
uncertainties are called “Structured”, in contrast with the “Unstructured” uncertainties which are 
described in the frequency domain in terms of maximum amplitude error in the transfer function 
model.  
 

 
Figure 1 Uncertainties are extracted from the plant M(s) and placed in a diagonal ∆ block 
 
In this section we present a method for modeling real parameter uncertainties that have known and 
bounded max variation magnitudes. Each parameter variation is “pulled out” of the uncertain plant 
model and it is placed inside a diagonal block ∆ that contains only the uncertainties, while the 
remaining plant is assumed to be known (best guess). The ∆ block is attached to the known plant 



2 
 

M(s) by means of (n) input/ output “wires”, where (n) is the number of plant uncertainties, as shown 
in Figure (1). In essence we are creating (n) additional inputs and outputs to the plant M(s) that 
connect to the uncertainties block ∆, which is a block diagonal matrix ∆= diag(δ1,δ2,δ3,...δn). The 
individual elements of ∆ may be scalars or matrices and each element represents a real uncertainty in 
the plant. They may be aerodynamic coefficient variations from nominal values, moment of inertia 
variations, thrust variations, etc. The magnitude of each element represents the maximum possible 
variation of the corresponding parameter above or below its nominal value. M(s) represents the 
known dynamics consisting of the plant model with the control system in closed-loop form.  
 
The internal uncertainties are “pulled out” of the plant M(s) and are connected to M(s) by fictitious 
inputs and outputs. The method used to extract them as is called the Internal Feedback Loop (IFL) 
method and it will be described in the next section. The augmented state-space model is then used to 
analyze robustness using µ-methods, similar to sensitivity analysis. The system in Figure (1) 
configuration is defined to be robust if it remains stable despite all possible variations in the ∆ block, 
as long as the magnitude of each individual variation is below the uncertainty δ(i). The structured 
singular value (µ) is the perfect tool for analyzing this type of robustness problems in the frequency 
domain. To make the analysis easier, the plant M(s) inputs and outputs are scaled so that the 
individual elements of the diagonal uncertainty block ∆ can now vary between +1 and -1. The value of 
1/ µ(M) represents the magnitude of the smallest perturbation that will destabilize the normalized 
closed-loop system M(s). According to the small gain theorem, the closed-loop system is robust as 
long as µ(M) across the normalized block ∆ is less than one at all frequencies. But the question is how 
do we extract the uncertainties out of the model? 
 
In the following sections we will also present criteria for evaluating closed-loop system robustness 
using µ-methods. The µ-tools are extended to analyze simultaneously robustness and performance in 
the presence of disturbances. We will present criteria for analyzing nominal performance, which is 
performance in presence of external disturbances alone, ignoring parameter variations. We will also 
present criteria for analyzing robust performance, which attempts to satisfy both performance and 
robustness, this is, stability and performance in presence of external disturbances and also 
robustness in the presence of internal parameter uncertainties, at the same time. We will also 
demonstrate how to use the Flixan program to create dynamic models for analyzing robustness. The 
magnitudes of the uncertainties are defined in the input data and the dynamic models are 
augmented with additional inputs and outputs which capture the uncertain parameter effects. The 
augmented models are then used to analyze robustness as it will be demonstrated by four real 
vehicle analysis examples. 
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The Internal Feedback Loop (IFL) Structure 
 
The IFL concept allows internal parameter perturbations in a plant to be treated like external 
disturbances in the system. This representation allows us to use µ-tools for robustness analysis, or to 
apply H∞ plus other robust methods to design control systems that can tolerate internal  parameter 
variations. To utilize the IFL concept the system must be expressed by the following equation: 
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Suppose that they are (l) independently perturbed parameters p1, p2, ... pl  with bounded parameter 
variations δpi, where │ δpi │≤ 1. The perturbation matrix ΔP= [ΔA, ΔB; ΔC, ΔD] can be decomposed 
with respect to each parameter variation as follows: 
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The perturbation matrix ΔP is assumed to have a rank-1 dependency with respect to each parameter 
(pi). For each parameter pi 
 
αx

(i) and  αy
(i)  are column vectors 

βx
(i), and βu

(i)  are row vectors 
 
The plant uncertainty ∆P due to all perturbations can be written in the following form 
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Where Mx and My are stacks of column vectors and Nx and Nu are stacks of row vectors as shown 
below 
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and 

 
Δ = diag [ δp1, δp2, δp3,.... δpl ] 
 
Notice, that in order to simplify the implementation, the columns of matrices Mx and My and the 
rows of matrices Nx and Nu are scaled, so that the elements of the diagonal block Δ have unity upper 
bound. Now let us introduce two new variables (zp and wp) and rewrite the equations in the following 
system form in order to express it as a block diagram. 

ppuxp zwanduNxNz ∆−=+=  
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The perturbed state-space system can be expressed by the following augmented representation 
which is the same as the original system in the upper left side, with some additional input and output 
vectors, an input and an output for each parameter uncertainty. 
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If we further separate the plant inputs (u) into disturbances (w) and controls (uc). That is: u=[w, uc], 
and if we also separate the plant outputs (y) into performance criteria (z) and control  measurements 
(ym), the above system is augmented as shown below. 
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The above formulation is useful for µ-synthesis or robustness/ performance analysis using µ-
methods. It is shown in block diagram form in Figure (2). The uncertainties block ∆ is normalized to 
unity by scaling the columns in the Mx , Mw , and Mym  matrices and rows in the Nx , Nw , and Nuc  
matrices after dividing with the square root of the corresponding singular value. The normalized 
parameter variations block ∆ is connected to the plant by means of the inputs wp and the outputs zp. 
When the controller feedback loop between (ym) and (uc) is closed, the controller K(s) which is 
designed based on the nominal plant P(s), is also expected to keep the plant stable despite all 
possible variations inside ∆ block. This property is defined as Robust Stability. In addition to robust 
stability the controller must also satisfy performance requirements between the disturbances (w) and 
the criteria (z) not only for the nominal plant (Nominal Performance), but also for the perturbed plant 
that has the uncertainty loop closed via the ∆ block. This property is known as Robust Performance. It 
means, that the system must be stable and it must satisfy the performance criteria (z) when excited 
by (w), despite all possible internal plant variations captured in ∆, which are normalized and their 
individual magnitudes δi can vary between -1 and +1.  
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Figure 2 Robustness analysis block showing the Uncertainties IFL loop, the control feedback loop, the disturbances (w), 
and performance outputs (z) 
 
This system can also be represented in matrix transfer function form as follows 
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