
1

In this example we have a spacecraft that requires high precision pointing for optical
instruments, such as a telescope, or a laser beam. Its Line-of-Sight (LOS) which is pointing at
targets is in the body x direction. The spacecraft points at a target for a period of time and then it
rotates to point at another target, and then another. The spacecraft is described to be an agile
spacecraft because under normal operations it is constantly maneuvering between targets and the
retargeting must be completed as fast as possible. The on board Attitude Control System (ACS)
operates in different modes depending on the circumstances. It uses a combination of reaction
control (RCS) jets and Single-Gimbal Control Moment Gyros (SG-CMG). In normal mode of

2

operation the ACS uses four Control Moment Gyros which provide high torque required for fast
maneuvering between targets. The CMGs use solar energy and they do not require fuel, they also
provider smoother operation than RCS. The spacecraft uses the RCS jets for momentum
desaturation and also as an ACS backup. It also has a fixed thruster engine for orbital
maneuvering. The spacecraft has a flexible structure because of the solar arrays and other
communication appendages that require finite element modeling and detailed flex analysis. To
further complicate the analysis there is also a tank on board containing fuel for the main engine
and the RCS jets which effects stability during re-boost and introduces oscillatory disturbances
that may degrade the LOS pointing accuracy as the fuel is sloshing inside the tank.

The following analysis focuses mainly in the two main modes of operation, the RCS and the
CMG attitude control. We will develop several dynamic models for this flexible spacecraft,
design control laws and analyze the ACS stability and performance in various modes of
operation. The analysis begins with simple rigid-body models and it gradually becomes more
complex as we include structural flexibility and fuel sloshing dynamics. We also gradually
increase the complexity of the control laws, starting with a simple phase-plane 3-dof logic and
upgrading it to a 6-dof logic that provides simultaneous translation and attitude control. The
modified logic is also designed to reduce fuel consumption by pulse-width-modulating the RCS
jets. Other control ideas, such as, using blended CMGs and Reaction Wheels (RW), and
combined RCS with RW configurations are also evaluated.

In section 1 we use the Flixan program to prepare various flexible spacecraft dynamic models
that will be used in later chapters. Two sets of models are created using the “Flexible Spacecraft
FEM” program (FEM), and the “Flight Vehicle Modeling” program (FVP), and they are saved in
two separate folders. The modeling section can be skipped if the user is already familiar with
vehicle modeling in Flixan and may jump to the more interesting analysis sections. In section 2
we design and analyze the RCS system. We begin with a simple 3-dof phase-plane, combined
with a dot-product jet-selection logic, and gradually upgrade it into a more advanced logic that
minimizes fuel usage. The method is augmented to 6-dof by including also translational control.
In section 2.6 we develop a non-linear slosh model for a partially filled fuel tank. This model is
used for zero g or low g environment. It is combined with the spacecraft model and used to
perform stability analysis. In section 3 we develop the Max Energy, non-linear control law for a
4 SG-CMG array with a singularity avoidance algorithm and implement it in various simulation
models. Finally, in chapter 4 we present simulation models that demonstrate multi-mode
operations.

3

Structural flexibility is an important factor to consider when analyzing stability and performance
of this spacecraft. It has solar arrays, antennas, and other appendages mounted on its relatively
solid bus structure that create low damped flex resonances which induce disturbances on the
spacecraft when they get excited by the spacecraft motion as it maneuvers around. This causes
degradation in LOS pointing, and jitter in optical imaging. Flexibility may also cause structural
instability if not filtered properly. In this section we are describing how to use the Flixan
program to generate linear models of the spacecraft that include structural flexibility and fuel
sloshing. If you are already familiar with the Flixan modeling process you may bypass this
section and go to the more interesting stuff in Section 2.

The first 46 structural modes of this spacecraft are saved in file “FlexSc_Rcs.Mod”. They were
obtained from a finite element modeling (FEM) program. The title of the modal data is “Flexible
Spacecraft with Solar Array, RCS and CMGs”. There is a block of data for each mode
(resonance) and there are 46 blocks of data. Each block contains the mode shapes and slopes of a
particular resonance at 19 vehicle locations (nodes). The first six modes are rigid-body modes at
zero frequency and they define the rigid-body motion of the spacecraft. We typically throw away
the first 6 rigid-body modes because we have our own rigid-body models which are more
efficient. The real structural modes start with mode number 7 which is at 0.5 Hz. Another
important file for flex model preparation is the nodes map, file “FlexSc_Rcs.Nod”, which
describes the identity of the 19 structural locations (nodes) included in the modal data file, in the
same order as they are listed there. The map file is used in menus by the model preparation
programs.

4

Figure 1 Locations of the RCS Jets and the Main Engine

19

The program finally calculates the modal strengths for the 46 modes and displays it in bar-chart.
Each bar corresponds to a mode number. The user must select all the modes from the chart,
shown below, by clicking on the bar with the mouse. When a mode is selected its color changes
from red to green.

20

21

Simple Simulation Using the Finite Element Model

The following simulation model ‟Flex_Sim.mdlˮ uses the system title ‟RB+Flex Spacecraft with
RCS and CMGˮ, which was created using modal data as described earlier. It is saved in folder
‟C:\Flixan\Examples\Flex Agile Spacecraft with SGCMG & RCS\Reaction Control System
Analysis\(a) Flex Models from Spacecraft FEM\Matanˮ.

Simple RCS Sim
Using the FEM

-K-

d2r

rater

atter

f (i)

Phase-Plane
Controller

Fjet

rate

atti

Flex Vehicle

[10, -10, 10]

Atti_cmd
(deg)

rate error

attitude

The simulation consists of the spacecraft dynamics and a simple phase-plane controller "Phase-
Plane.m". It is initialized by file "start.m" which loads the spacecraft state-space system from file
"flex_spacecraft_fem_s.m". The rigid-body modes are included in the finite element model. The
following figure shows the spacecraft attitude response to 10 (deg) attitude commands in
different directions. It also shows accelerometer and rate gyro responses in three spacecraft
locations. This is a simple model to begin. We will continue with more complex models in the
following sections.

22

F
le

x
V

eh
ic

le
 D

yn
am

ic
s

(f
ro

m
 F

E
M

)

%
 I

np
ut

s
 =

 1
9

%

 1

 F
or

ce
 N

o
 1

 A
pp

lie
d

at
 N

od
e

 8

 (
lb

f)

%

 2

 F

or
ce

 N
o

 2
 A

pp
lie

d
at

 N
od

e

 9
 (

lb
f)

%

 3

 F
or

ce
 N

o
 3

 A
pp

lie
d

at
 N

od
e

10

 (
lb

f)

%

 4

 F

or
ce

 N
o

 4
 A

pp
lie

d
at

 N
od

e

11
 (

lb
f)

%

 5

 F
or

ce
 N

o
 5

 A
pp

lie
d

at
 N

od
e

12

 (
lb

f)

%

 6

 F

or
ce

 N
o

 6
 A

pp
lie

d
at

 N
od

e

13
 (

lb
f)

%

 7

 F
or

ce
 N

o
 7

 A
pp

lie
d

at
 N

od
e

14

 (
lb

f)

%

 8

 F

or
ce

 N
o

 8
 A

pp
lie

d
at

 N
od

e

15
 (

lb
f)

%

 9

 F
or

ce
 N

o
 9

 A
pp

lie
d

at
 N

od
e

16

 (
lb

f)

%

10

 F

or
ce

 N
o

10
 A

pp
lie

d
at

 N
od

e

17
 (

lb
f)

%

11

 F
or

ce
 N

o
11

 A
pp

lie
d

at
 N

od
e

18

 (
lb

f)

%

12

 F

or
ce

 N
o

12
 A

pp
lie

d
at

 N
od

e

19
 (

lb
f)

%

13

 F
or

ce
 N

o
13

 A
pp

lie
d

at
 N

od
e

 5

 (
lb

f)

%

14

 F
or

ce
 N

o
14

 A
pp

lie
d

at
 N

od
e

 7

 (
lb

f)

%

15

 F

or
ce

 N
o

15
 A

pp
lie

d
at

 N
od

e

 7
 (

lb
f)

%

16

 F
or

ce
 N

o
16

 A
pp

lie
d

at
 N

od
e

 7

 (
lb

f)

%

17

 T
or

qu
e

N
o

 1
 A

pp
lie

d
at

 N
od

e

 6
 (

ft
-lb

)

%

18

 T
or

qu
e

N
o

 2
 A

pp
lie

d
at

 N
od

e

 6
 (

ft
-lb

)

%

19

 T
or

qu
e

N
o

 3
 A

pp
lie

d
at

 N
od

e

 6
 (

ft
-lb

)

%
 O

ut
pu

ts
 =

 2
1

%

 1

 X
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 2

 (
ft

)

%

 2

 Y

-A
cc

el
er

at
. S

en
se

d
at

 N
od

e

 2
 (

ft
)

%

 3

 Z
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 2

 (
ft

)

%

 4

 X
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 4

 (
ft

)

%

 5

 Y

-A
cc

el
er

at
. S

en
se

d
at

 N
od

e

 4
 (

ft
)

%

 6

 Z
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 4

 (
ft

)

%

 7

 X
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 7

 (
ft

)

%

 8

 Y

-A
cc

el
er

at
. S

en
se

d
at

 N
od

e

 7
 (

ft
)

%

 9

 Z
-A

cc
el

er
at

. S
en

se
d

at
 N

od
e

 7

 (
ft

)

%

10

 X
-R

ot
at

io
n

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

11

 Y
-R

ot
at

io
n

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

12

 Z
-R

ot
at

io
n

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

13

 X
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

14

 Y
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

15

 Z
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 2

 (
ra

di
an

)

%

16

 X
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 1

 (
ra

di
an

)

%

17

 Y
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 1

 (
ra

di
an

)

%

18

 Z
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 1

 (
ra

di
an

)

%

19

 X
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 4

 (
ra

di
an

)

%

20

 Y
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 4

 (
ra

di
an

)

%

21

 Z
-R

ot
. R

at
e

 S
en

se
d

at
 N

od
e

 4

 (
ra

di
an

)

ac
ce

le
ra

ti
on

s
at

 n
od

es
 #

2,

 4
,
7

ra
te

s
at

no
de

s
#

2,
 1

,
4

12
 R

CS

J
et

 F
or

ce
s

2a
tt

i

1
ra

te

ti
m

e

ti
m

e

ra
te

_
n

4

ra
te

4

ra
te

_
n

2

ra
te

2

ra
te

_
n

1

ra
te

1

a
tt

it

a
tt

it
u

d
e

#

2

a
cc

_
n

7

a
cc

 @
 n

o
d

 #
7

a
cc

_
n

4

a
cc

 @
 n

o
d

 #
4

a
cc

_
n

2

a
cc

 @
 n

o
d

 #
2

T
cm

g

x'
 =

 A
x+

B
u

 y
 =

 C
x+

D
u

S
p

a
ce

cr
a

ft
F

E
M

F
ta

n
k

F
e

n
g

C
lo

ck

1
F

je
t

nt

 1 3 3

23

Figure 1.1.1 Flexible spacecraft response to 10 (deg) attitude commands.

24

Frequency Domain Stability Analysis

In the same folder there is also a Simulink model “Open_Loop_RCS.mdlˮ used for analyzing
RCS flex mode stability using the Describing Function (DF) method.

RCS Open-Loop Model for Frequency Domain
Describing Function Stability Analysis

Note, Roll, Pitch, Yaw plus
infinite number of other directions
can be checked for Stability

Each direction corresponds to
a unique set of thrusters

1
mag

(0 0 1)

rotat vector

Udir

atter

rater

mag

atter + rate
Mix

V U

Unit
Vect

-K-

Na_max

Udir

mag

f (i)

Jet Select

Fjet

atti

rate

Flex Vehicle
1

mag

Figure 1.1.2 Frequency domain model for RCS stability analysis using Describing Function

This model is an open-loop linearized version of the previous closed-loop model. It consists of
the same basic subsystems, slightly modified for frequency domain analysis. Stability is
evaluated one axis (rotational direction) at a time. The rotational direction is an input to the
model. In the example above we are analyzing the yaw axis. By modifying the rotation vector we
can analyze pitch (0, 1, 0) and roll (1, 0, 0). It is also possible to analyze stability in many other
skewed directions such as: (0, 0.7, -0.7) or (0.5, -0.3, 0.6), since every direction corresponds to a
unique set of thrusters exciting the flex modes differently. For linear analysis the complex non-
linear phase-plane logic is approximated with a linear combination of attitude plus rate errors.
The linearized jet selection logic is also an approximation because it averages the positive and
negative accelerations about a specific rotational vector. It selects not only the positive direction
jets (with half thrust) but also the jets that accelerate in the opposite direction but assuming
negative half thrusts, thus, exercising both positive and negative jets. The system output is
multiplied by the max value of the dead-band DF to scale the Nichols charts so that the Nichols
critical point (+) corresponds to the min of the DF inverse, that is -1/N(a). The Matlab file
"frequ.m" uses the above model to calculate the frequency response and plot the Nichols charts
as shown in Figure (1.1.3) below.

25

Figure 1.1.3 Nichols Charts showing stability margins from the minimum point of -1/N(a)

33

In this section we will design the RCS control laws, starting with a simple phase-plane logic and
advancing to a more complex jet selection that minimizes fuel usage. We will also perform
analysis and simulations, starting with a simple rigid-body non-linear simulation, and gradually
advance to more complex models that include structural flexibility and fuel sloshing. We will
present a non-linear model for modeling propellant sloshing at zero or low g, and finally analyze
RCS stability in the frequency domain with flexibility and fuel sloshing.

Frcs

W_b

Qt

Vehicle
Dynamics

Qc

Qf
qe

Quat Error

rater

atter

f (i)

Phase-Plane
Controller

Qcom

Command
30 deg

body rate

Quaternion Feedback

Figure 2.1 Attitude Control System

Let us begin with a simplified version of the RCS Attitude Control System shown in Figure
(2.1). It consists of the spacecraft dynamics inside the green block, a phase-plane attitude control
system (orange block), a quaternion attitude command generator, and a quaternion error block
(yellow).

34

The orange block in Figure (2.1) is the Attitude Control System (ACS) which consists of the
phase-plane logic and the jet-selection logic. The yellow block calculates the attitude error. The
inputs to the phase-plane logic are attitude errors, and vehicle rates. The phase-plane calculates
the demanded change in vehicle rate, which is a vector about which the vehicle must rotate in
order to move from the initial orientation to the commanded attitude. The jet selection logic
translates the rate command vector into jet firing. It uses dot product to calculate the torque
contributions from all 12 jets in the commanded direction and it selects a few jets that contribute
the biggest moment in that direction. The output from jet-select is a vector of 12 jet forces. Most
of them are “off”. The logic fires between 2 to 4 jets at a time, depending on the commanded
direction. Figure (2.2) shows the phase-plane logic in one axis. It determines the acceleration
direction from the rate and attitude errors. There are 3 separate phase-planes operating
simultaneously for roll, pitch, and yaw axes. Each plane consists of three regions, a region of
zero firing, a region of positive jet firing, and a region of negative jet firing in the corresponding
direction. The firing decision is made based on the combined rate and attitude error in the
direction that reduces error.

Figure 2.2 Phase-Plane Shows Conditions for Jet Firing

35

In this design example we begin with simple models and gradually upgrade them to more
complex ones. As the design progresses we are going to analyze various simulation models with
increasing complexity in terms of spacecraft dynamics and also in control design. To avoid
confusion, therefore, each simulation model with the associated Simulink and data files are
placed in separate folders and they will be analyzed separately. We start with a 3-dof rigid-body
ACS simulation that uses dot-product jet selection logic. Then we apply the same ACS control
system to the flex models created in Section 1 using two separate Flixan methods. We compare
the simulation results obtained from the two models, both in time and also in frequency domain.

The next step is to upgrade the ACS design and to replace it with a fuel optimal jet selection
logic that significantly reduces fuel usage. Following that, we further upgrade the minimum fuel
control logic to accommodate also translational in addition to rotational control. We finally test
the full 6-dof minimum fuel control logic using a non-linear spacecraft model with flexibility,
the flex dynamics being connected in parallel with the previously used non-linear rigid-body
model. This demonstrates a wide variety of options which are available for reaction control
modeling and analysis.

2.2.1 Rigid-Body Non-Linear Simulation

We start the RCS analysis with a simple rigid-body non-linear simulation model in order to
demonstrate the phase-plane and jet-selection logic. The files used in this model are in folder
“…\Examples\Flex Agile Spacecraft with SGCMG & RCS\Reaction Control System Analysis\(c)
NonLin RigBody RCS Attitude Control”. The Simulink model is “RB_Sim_RCS.Mdl” shown in
Figure (2.2.1).

36

Rigid Spacecraft Simulation using RCS

Frcs

W_b

Qt

Vehicle
Dynamics

Qc

Qf
qe

Quat Error

rater

atter

f (i)

Phase-Plane
Controller

Qcom

Command
50 deg

body rate

Quaternion Feedback

The spacecraft dynamics are implemented in Matlab function “SV_Dynamics.m”. The spacecraft
outputs are body rate and attitude quaternion. The quaternion error (yellow) block receives the
attitude quaternion command and the quaternion feedback from the spacecraft and calculates the
attitude error which consists only of the 3-axis vector part of the quaternion error, representing
attitude errors in roll, pitch and yaw. The magnitude part of the 4-dimensional quaternion error is
ignored. The Matlab function “qerror2.m” calculates the quaternion error. The phase-plane and
jet-selection logic are coded in Matlab functions “Phase_Plane.m”, and “Jet_Select_dot.m”. Jet-
select is called by the phase-plane logic. The phase-plane parameters such as the dead-band and
rate limits are loaded into Matlab workspace by the initialization file “start.m” which must be
executed prior to the simulation. Other parameters are also loaded, such as, number of jets,
thrust, jet locations, thrust directions, moments of inertia, and cg location. They are used by the
jet selection logic to determine which jets should be fired in order to provide rotation in the
direction commanded by the phase-plane logic.

The attitude command is
defined as a quaternion
rotation from the current
attitude, which is assumed to
be zero, i.e. (0,0,0,1). The
quaternion command is a 4-
dimentional vector
consisting of a direction
about which the vehicle should rotate, and the angle of rotation. The block [Qcom] is shown in
detail in Figure (2.2.2). The direction “com_dir” is defined in file “start.m”, and the rotation
angle (50 deg) is defined inside the block. After running the Simulink model, execute file “pl.m”
which will plot the simulation results, as shown in figure (2.2.3) below.

1
Qcom

sin

sin(Q/2)

com_dir

direction command

cos

cos(Q/2)

-K-

Q/2

Matrix
Multiply

Product50 deg
Step

39

2.2.2 Comparing the Linear Models with Structural Flexibility in Closed-Loop Sims

The next step in our RCS analysis is to check out by means of simulations the two types of flex
spacecraft models that were created in sections 1.1 and 1.2. The first one was created by the flex
spacecraft FE modeling program, and the second one was created by the flight vehicle modeling
program. We want to make sure that similar results are obtained from both models before we
continue any further. The first one has the rigid-body dynamics represented by rigid-body modes
from the FEM, while the second one is using its own rigid-body model and only the flex modes
are taken out of the FEM. The files for the Simulink models are in the same folder
“…\Examples\Flex Agile Spacecraft with SGCMG & RCS\Reaction Control System Analysis\ (d)
RCS Attitude Control w Flex”. It is a good practice to test and compare these two systems
before we move on to more complex models.

Let us begin with the first simulation which is in file “Sim_Flex_fem_z.mdl” and uses the FEM,
see Figure (2.2.4). The spacecraft system is in file “flex_spacecraft_fem_z.m”. It includes 40
structural modes and 6 rigid-body modes, a total of 46 modes. It was discretized with a sampling
period of Ts=5 msec, and its title is “RB+Flex Spacecraft with RCS and CMG (Z-Transf)”.

Flex RCS Sim

-K-

d2r

0

Reboost Engine
Thrust

rater

atter

f (i)

Phase-Plane
Controller

Fjet

Feng

wb1

atti

Flex Spacecraft
(discrete)

[1, -2, 3]*10

Atti_cmd
(deg)

Figure 2.2.4 Linear Flex Spacecraft Simulation “Sim_Flex_fem_z.mdl”

The ACS consists of the phase-plane and the dot-product jet selection logic which is sampled
slower, at 20*Ts= 0.1 sec. There is a fuel counter which integrates the sum of jet thrusts:

dtF
nti

i∫ ∑
= ,1

)(. The rate transition blocks separate the flex spacecraft (which is sampled at 5 msec)

from the ACS (which is sampled every 100 msec). The ACS logic is implemented as a Matlab
Function in file “Phase_Plane.m”, and it is similar to the one described in section 2.2.1. The jet-
select output is normalized to unity and it is, therefore, divided by the jet thrust (Th). There is no
translation control yet.

40

Phase-Plane / Jet-Select Logic

(0 to 1)

1
f(i)

K Ts

z-1

int

eu

atter

atter

Sum of
Thrusts

1/z

RT3

ZOH
RT2

ZOH

RT1

MATLAB
Function

Phase Plane
Jet Select

Fuel

Frcs

-K-

1 / Thrust

-K-

-1

eu

 eu

Fuel

Frcs

2
atter

1
rater

Figure 2.2.5 Phase-Plane and Jet Selection Logic

The discrete flex spacecraft block is shown in detail in Figure (2.2.6). Its inputs are 12 RCS jet
forces, and the orbital maneuvering engine thrust (which is not used in this case). The outputs are
attitudes, rates, and accelerations at specific vehicle locations defined in section 1.1 during model
preparation. File “start.m” initializes the spacecraft and ACS parameters for the simulations, and
file “pl.m” plots the simulation data, as shown in figure (2.2.7).

Figure 2.2.6 Discrete Spacecraft State-Space System from file “flex_spacecraft_fem_z.m”, system originated
from the Flex Spacecraft Modeling Program.

41

42

Figure 2.2.7 Simulation Results from “Sim_Flex_fem_z.mdl”

43

The second Simulink model “Sim_Flex_fvp_z.mdl” is almost identical to the first one, but uses
the discrete system “flex_satellite_fvp_z.m”, which was created by the “Flight Vehicle Modeling
Program” in Section 1.2. The spacecraft dynamics block is shown in detail in Figure (2.2.7).

Flex Spacecraft
Discrete Model from FVP

% Inputs = 13
% 1 BR-Y+Z dTh/Th for RCS Jet No 1 (-)
% 2 BL+Y+Z dTh/Th for RCS Jet No 2 (-)
% 3 FR-Y-Z dTh/Th for RCS Jet No 3 (-)
% 4 FL+Y-Z dTh/Th for RCS Jet No 4 (-)
% 5 FR-Y+Z dTh/Th for RCS Jet No 5 (-)
% 6 FL+Y+Z dTh/Th for RCS Jet No 6 (-)
% 7 FRAxi-X dTh/Th for RCS Jet No 7 (-)
% 8 FLAxi-X dTh/Th for RCS Jet No 8 (-)
% 9 BR-Y-Z dTh/Th for RCS Jet No 9 (-)
% 10 BL+Y-Z dTh/Th for RCS Jet No 10 (-)
% 11 BRAxi+X dTh/Th for RCS Jet No 11 (-)
% 12 BLAxi+X dTh/Th for RCS Jet No 12 (-)

% 13 Engine Force Direction: (1, 0, 0)

% Outputs = 26
% 1 Roll Attitude (phi-body) (radians)
% 2 Roll Rate (p-body) (rad/sec)
% 3 Pitch Attitude (thet-bdy) (radians)
% 4 Pitch Rate (q-body) (rad/sec)
% 5 Yaw Attitude (psi-body) (radians)
% 6 Yaw Rate (r-body) (rad/sec)
% 7 Angle of attack, alfa, (radians)
% 8 Angle of sideslip, beta, (radian)
% 9 Change in Altitude, delta-h, (feet)
% 10 Forw ard Acceleration (V-dot) (ft/sec)
% 11 Cross Range Velocity (Vcr) (ft/sec)

% 12 Gyro # 1, Roll Attitude (Body) (radians)
% 13 Gyro # 2, Pitch Attitude (Body) (radians)
% 14 Gyro # 3, Yaw Attitude (Body) (radians)

% 15 Rate-Gyro # 4, Roll Rate (Body) (rad/sec)
% 16 Rate-Gyro # 5, Pitch Rate (Body) (rad/sec)
% 17 Rate-Gyro # 6, Yaw Rate (Body) (rad/sec)

% 18 Rate-Gyro # 7, Roll Rate (Body) (rad/sec)
% 19 Rate-Gyro # 8, Pitch Rate (Body) (rad/sec)
% 20 Rate-Gyro # 9, Yaw Rate (Body) (rad/sec)

% 21 Accelerom # 1, (along X), (ft/sec^2) Translat. Acceler
% 22 Accelerom # 2, (along Y), (ft/sec^2) Translat. Acceler
% 23 Accelerom # 3, (along Z), (ft/sec^2) Translat. Acceler

% 24 Accelerom # 4, (along X), (ft/sec^2) Translat. Acceler
% 25 Accelerom # 5, (along Y), (ft/sec^2) Translat. Acceler
% 26 Accelerom # 6, (along Z), (ft/sec^2) Translat. Acceler

2
atti

1
wb1

wb2

wb1

tran

tran

tran
time

time

term

-K-

r2d

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

flex_spacecraft
(Z-domain)

dV

dV

atti

atti

att

acc2

K Ts

z-1
Int1

K Ts

z-1
Int

Clock

wb

2
Feng

1
Fjet

acc1

3

3

3
nt

Figure 2.2.7 Discrete Spacecraft State-Space System from file “flex_satellite_fvp_z.m”, system originated
from the Flight Vehicle Modeling Program.

The jet-selection logic output in this model is a little different, because, it uses the FVP
spacecraft system. This system requires the jet thrust inputs to vary between zero and one (one
representing max thrust). The actual thrust value is integrated in the state-space system data. The
file “start.m” initializes both models, and file “pl.m” plots the results from either simulation after
completion.

The following plots show the spacecraft response to attitude commands. The attitude converges
to its commanded position. The rates are limited to approximately 0.2 (deg/sec). It is significant
to notice that at the end of the maneuver the vehicle linear velocity and position are not zero.
This will be corrected later by including a translational control logic. The plots show that the
responses of the two models to attitude commands are almost identical. There may be negligible
differences between the two models in the rigid-body data.

44

45

Figure 2.2.7 Simulation Results from “Sim_Flex_fvp_z.mdl”

46

System Comparison in the Frequency Domain

Move down to the subfolder “Frequency Domain Comparison” and run the Matlab file
“run_frequ.m”. This file loads the two spacecraft systems “flex_spacecraft_fem_s.m” and
“flex_spacecraft_fvp_s.m” that were created using different methods and calculates the
frequency responses of the open-loop systems including linearized controls. The frequency
responses are shown plotted together in Bode and Nichols charts in Figure (2.2.8). The results
are almost identical proving a very good match between the two modeling approaches. This is an
encouragement to continue the analysis further.

47

Figure 2.2.8 Frequency domain plots show a very good comparison between the two models

48

A typical attitude control Reaction Control System (RCS) consists of the phase-plane logic and
the jet selection logic. The phase-plane logic determines the direction where to apply a torque on
the spacecraft in order to correct for attitude errors and it generates a rate change command to the
jet selection logic. In a 12 jet, dot-product based, jet selection logic, 2 to 4 jets are selected which
are contributing a positive torque in the demanded direction, and the logic fires those jets for a
short period to correct the attitude error. The direction of motion, however, may be near but it is
rarely along the commanded direction, which causes an error to develop in a different direction
which corresponds to a new set of jets to be selected and fired in the next cycle. It is common
sense, therefore, to assume that in order to rotate the spacecraft about a commanded direction
more optimally in terms of fuel usage, after selecting the jets which contribute a positive torque
in that direction, not all of them should be fired at the same level. Instead, if we assume that the
flow rate is proportional to thrust, the ones which contribute more torque should be allowed to
fire at higher thrusts than the ones which contribute less in that direction. But this is impossible
because most reaction control jets can only fire at constant thrust. They are either “on” or they
are “off.” In this case we can use pulse width modulation. We assume that the control cycle
period is relatively long enough (0.1 sec) to allow sufficient room for a jet pulse width
modulation within the cycle. In the beginning of the control cycle we select 3 jets and turn them
on together. Then we allow the most contributing jets to stay on longer within the cycle than the
less contributing jets, an “on-time” proportional to the amount of contribution of the selected
jets. The jet control logic commands the jets every 0.1 sec. When a jet is selected it receives also
its “on-time”, which is in multiples of 5 msec, a minimum of 5 msec, and a maximum of 95
msec. So the attitude control software does not have the responsibility to turn “off” the jets.

But how do we determine how long should each of the selected jets stay “on” during the control
cycle? Let us assume that three jets out of 12 were selected (i, j, and k) and their corresponding
vehicle acceleration vectors from each jet are: (ai , aj , ak) respectively. If during the cycle we
turn them on for a period of (ti , tj , tk) respectively, and there are no other disturbances, at the
end of the cycle the vehicle rate (δω) will be

() []tA
t
t
t

aaa kji

k

j

i

kji ,,=















=ωδ (2.4.1)

Now if (δωc) represents the commanded change in vehicle rate at the end of the cycle, and that
the vehicle does move much during the short cycle, then we can invert the matrix and solve for
the on-times. We assume of course that the jets were properly selected for the commanded
direction to provide positive on-times. Otherwise, it may result into negative on-times.

[] ckjiAt ωδ1
,,

−= (2.4.2)

49

Assuming that (fi , fj , fk) are the corresponding amounts of fuel flow rates for the three thrusters
selected, the total amount of propellant used by jets (i, j, and k) to achieve a commanded change
in rate (δωc) is

() ()[] ckjikji

k

j

i

kjikji Afff
t
t
t

fffp ωδ1
,,,,

−=















= (2.4.3)

The propellant usage factor pi,j,k is the criterion used for selecting 3 jets from a total of 12 jets.
The thrust directions of the jets on the spacecraft are assumed to be properly selected so that
there are always 3 jets, at least, which provide a positive torque in any commanded direction. For
a given change in rate command (δωc), the jet-select logic first chooses 3 jets that minimize
equation (2.4.3) using function Jet_Select_3dof, and it calculates also the “on-times” from
equation (2.4.2).

2.4.1 Upgrading the ACS Model with the Min Fuel Logic

The Simulink model “Sim_Flex_3rot.Mdl” shown in Figure (2.4.4) implements the minimum
fuel attitude control logic. It can be found in folder “\Flixan\ Examples\Flex Agile Spacecraft
with SGCMG & RCS\Analysis\ (e) Min Fuel RCS Control 3-Rot Flex”. It consists of the RCS
attitude control system which operates at 0.1 sec sampling period, and the flexible spacecraft
dynamics which is sampled every 5 msec. The roll, pitch, yaw attitude command is applied on
the left side.

rate

ater

Fjet

Phase-Plane

Fjet

wb1

atti

Flex Spacecraft

[1 3 2]*10

Attitude Change
Command (deg)

-K-

Figure 2.4.4 The 3-dof Simulation Model (Sim_Flex_7R.Mdl) for Min Fuel ACS

The orange ACS block is shown expanded in Figure (2.4.5). It consists of the phase-plane logic
which is implemented in Matlab function “Rotat_PP3.m”. It receives the attitude error and body
rate signals. The phase-plane calculates the commanded change (δω) in vehicle rate (roll, pitch,
and yaw), that feeds into the jet selection logic, shown in Figure (2.4.6), which turns the thrusters
“on” or “off” as needed to maneuver the vehicle. Since the system operates at two different rates,
0.005 sec and 0.1 sec, rate transitioning blocks are used in the interfaces between the Simulink
blocks.

54

The attitude control logic that we have used so far completely ignores the translational position
and velocity state of the spacecraft at the end of a maneuver. In some cases we may want to
maneuver the spacecraft attitude while maintaining its current position and velocity, without any
linear translation, or we may want to simultaneously command attitude and position changes,
such as, for example, during docking. In this section we shall extend the min fuel jet selection
logic to 6 degrees-of-freedom (6-dof) control for positioning the spacecraft in both rotational and
translational directions. The extended 6-dof logic consists of two phase-planes, a rotational
phase-plane similar to the one used in section 2.4, and a translational phase-plane that controls
spacecraft linear position and operates very similar. The extended 6-dof jet-select logic receives
(δω) commands from the rotational phase-plane, and (δv) commands from the translational
phase-plane. Then it performs a search to identify 6 jets that provide maximum contribution
towards the commanded rotational and translational directions combined.

Let us now assume that six jets out of 12 are selected (i, j, k, l, m, and n) and that their
corresponding vehicle angular acceleration vectors from each jet are: (ai , aj , ak , al , am , an)
respectively. Also the translational acceleration vectors from each jet are: (bi , bj , bk , bl , bm , bn)
respectively. The rotational and translational accelerations for a jet (i) are calculated by the
following equations

()
v

ii
iiiivi M

ufbfudJa =×= −1

Where:
di is the moment arm vector of the thruster from the CG
ui is the thruster direction unit vector
fi is the jet thrust
Mv Jv is the vehicle mass and moment of inertia matrix

If we turn on the 6 selected jets together in the beginning of the control cycle period and leave
them on for periods of (ti , tj , tk , tl , tm , tn) respectively, then when the longest firing jet is turned
off the vehicle angular and translational rate (δω, δv)’ is:

[]tA

t
t
t
t
t
t

bbbbbb
aaaaaa

v x

n

m

l

k

j

i

nmlkji

nmlkji
)66(=



































=








δ
ωδ

 (2.5.1)

55

If (δω, and δv)c represent the commanded changes in vehicle angular and translational rate at the
end of the 0.1 sec cycle, then we can solve for the on-times of the 6 jets by inverting the A
matrix. We assume of course that the jets are properly selected for the commanded directions in
order to provide positive on-times, otherwise, it will result into negative on-times.

[]
c

x v
At 








= −

δ
ωδ1

)66((2.5.2)

Assuming that (fi , fj , fk , fl , fm , fn) are the corresponding amounts of fuel flow rates for the six
thrusters, the total amount of propellant used by the 6 jets to achieve the commanded (δω, and
δv)c is

() [] 







= −

v
Affffffp xnmlkjinmlkji δ

ωδ1
)66(,,,,, (2.5.3)

The propellant usage factor pi,j,k,l,m,n is the criterion for selecting 6 jets from a total of 12 jets. We
also assume that the thrust directions of the jets are properly selected so that there are at least 6
jets which provide a positive torque or force in any commanded direction. For a given
commanded (δω, and δv)c, the jet-select logic first chooses 6 jets that minimize equation (2.5.3)
using function Jet_Select_6dof, and it calculates also the “on-times” from equation (2.5.2).

2.5.1 Rotational plus Translational 6-dof Simulation Model, using the
Minimum Fuel Jet Selection Logic

The files for this simulation model are in folder “C:\Flixan\Examples\Flex Agile Spacecraft with
SGCMG & RCS\Reaction Control System Analysis\ (f) Min Fuel RCS Control 6-dof Flex”. The
Matlab file “start.m” initializes the simulation parameters. The Simulink model that implements
the fuel optimal 6-dof control logic is “Sim_Flex-6dof.Mdl” and it is shown in Figure (2.5.4). It
consists of the rotational and translational phase-planes (implemented in functions
“Rotat_PP3.m” and “Translat_PP.m”) which operate at 0.1 sec and generate the commands
(δω, and δv)c driving the 6-dof jet selection logic. The jet selection logic calls functions
“Jet_main_6dof.m”, “Jet_Select_6dof.m”, “Jet_Select_rotat” and “Jet_Select-transl” which
select 6 jets and their corresponding “on-times”, for each 0.1 sec cycle. The jet forces drive the
flex spacecraft dynamics (green block) which is the system “flex_spacecraft_fvp_z.m” used
earlier and sampled at 5 msec. The inputs to the phase-planes are attitude and translation delta
commands.

56

Figure 3.5.4 Minimum Fuel 6-dof Simulation Model “Sim_Flex_6dof.mdl”

In this configuration the RCS controls the vehicle in all 3-translational and 3-rotational
directions. The rotational phase-plane issues a change in body rate command and it is
implemented in Matlab function “Rotat_PP3.m” which. The translational phase-plane issues a
change in velocity command and it is implemented in Matlab function “Translat_PP.m”. Figure
(2.5.5) shows the Simulink implementation of the jet selection logic.

Figure 2.5.5 Minimum Fuel 6-dof Jet Selection Logic

Inside the jet select logic, the change in rate and velocity commands are inputs to Matlab
function f= Jet_main_6dof(sync, δω, δv), which calculates the jet forces f(i). This function calls
the function [js, t]= Jet_Select_6dof(δω, δv) which performs a jet search, and selects 6 among
the 12 jets that minimize the fuel equation (2.5.3), where (δω, δv) are the change in vehicle rate
and velocity commanded by the phase planes. The logic selects 6 jets that best satisfy the
combined translational and rotational phase-plane demands. The selected jet numbers are given
in the array js(.), and the corresponding on-times in array t(.). The input “sync” is a saw-tooth
signal that synchronizes the jet turning-off times in the simulation, not in the actual hardware. In
the beginning of the control cycle all 6 selected jets are turned “on”. The logic turns them “off”

60

There is a tank inside the spacecraft that has a spherical shape and contains fuel for the RCS jets.
The spacecraft motion causes the fuel to move inside the tank and it is creating disturbance
forces on the spacecraft which has the potential to interfere with operations or even cause
instability in the control system. There is a need, therefore, to capture the fuel sloshing dynamics
in a mathematical model that can be combined with the spacecraft model. Linear spring-mass or
pendulum models typically used in launch vehicles are not applicable here because the spacecraft
is at zero or very low g and the fuel is not behaving like a linear pendulum. It is reasonable,
therefore, to assume that the sloshing fuel will induce a bigger disturbance on the spacecraft
when it is lumped together like a soft mass ms that can slide or bounce against the inner surface
of the tank as the vehicle translates and rotates in space, and not when it is spread thin inside the
tank.

There are a couple of conceptual models to capture the lumped fuel motion and its reaction
forces on the tank, both leading to the same equations. One model assumes that the slosh mass
ms is soft and it behaves like a 3-dimensional elastic pendulum. The mass is attached to a tether,
and the other end of the tether is attached to the center of the tank, as if as there is a hook at the
center of the tank. To capture the elasticity of the mass we insert a spring between the mass and
the tether end. When the string is stretched the reaction forces on the vehicle are applied at the
tank center through the tether. The soft mass either slides around the inside surface of the tank
with the string stretched or it floats inside the tank when the string is slack, in which case it does
not apply any force on the tank. When the mass distance from the tank center exceeds the length
of the tether (r) the spring stretches and applies a force at the center through the tether. In another
visualization the mass softly splashes against the inner surface of the tank without disintegrating.

There is one additional feature needed to prevent excessive deflections of the slosh mass and to
contain it within the walls of the tank. We use a non-linear spring that has a stiffness coefficient
ks(δ) increasing parabolically with extension (δ), that is 2

2
1 ccks += δ . As the mass approaches

the tank surface the radial string force becomes sufficiently high to constrain the mass within the
tank walls. So the soft mass can either slide parallel to the surface, or float inside the tank, or
bounce against the surface. It can be pictured as shown in Figure (2.6.1), where the fixed length
of the string is r, where r is about half the size of the tank radius r0, and there is a non-linear
spring between the end of the string and the center of slosh mass ms.

61

Figure 2.6.1 Conceptual Illustration of the Non-Linear Slosh Pendulum Model

Note, the model parameters, such as the axial and tangential damping coefficients, the length of
the tether (r), and the non-linear spring constants are derived from data derived from
computational fluid dynamics models. The parameters are adjusted to match the oscillations
frequency and rate of decay of the CFD responses. The non-linear spring parameters c1 and c2
are adjusted to capture a realistic behavior of the liquid mass as it hits a surface of the tank due to
vehicle accelerations.

Another conceptual model that captures the same dynamic effect is to assume that the slosh mass
behaves like a soft ball, rolling and bouncing inside a sphere which is approximately half the
tank radius, applying forces on the tank perpendicular to the tank surface. Since the tank is
spherical the reaction forces always pass through the tank center, same as the soft pendulum
model.

62

2.6.1 What is the worst fuel level?

Before we start analyzing the sloshing problem we
must determine: what is the fuel level where the slosh
disturbance on the vehicle is maximized. When the
tank is almost empty by common sense we know that
the sloshing forces are negligible. Also, when the tank
is full there is no fuel motion and therefore there is no
disturbance. The answer is obviously somewhere in
between and we must, therefore, determine what fuel
level maximizes the slosh disturbance and use that
fuel level in the analysis in order to be on the
conservative side.

Let us assume a spherical tank of radius r0, volume V0, holding a total fuel mass M0. The fuel is
rotating around the inside surface at an angular rate ωs held together under the influence of the
centripetal force. Its density is (ρ), where:

3
0

0

0

0

4
3

r
M

V
M

π
ρ == (2.6.1)

Assuming that the fuel surface is almost flat, let us calculate the fuel volume as a function of fuel
level height (h)

() () ()

() 





 −=

−=−= ∫∫

3

2

0
2

0

2
0

0

2
0

2
0

hrhhV

dhhhrdhxrhV
hh

π

ππ
 (2.6.2)

The fuel mass can be calculated as a function of the fuel surface height or as a function of the
surface distance from the tank center x0.







 −+=






 −= 0

2
0

3
0

3
00

2

3
1

3
2

3
xrxrhrhms πρπρ (2.6.3)

We can also derive equations for the tank fill ratio fr as a function of fuel height (between zero
and one) and the pendulum length lp between the center of the tank and the fuel center of mass.

() ()







 −

−
=

−
=

3
4

2
4
3

0

2
0

3
0

0
2

hr

hrl
r

hrhf pr (2.6.4)

It seems reasonable to assume that the disturbance on the vehicle will be maxed when the slosh
moment of the liquid from the tank center is maximized. The slosh moment is equal to the liquid
mass times the distance of its center of mass from the tank center.

63

()

()22
0

2
0

22
0

4

0

0

0

0

xrxm

dxxrxdmxxm

ss

r

x

r

x
ss

−=

−== ∫∫
πρ

πρ
 (2.6.5)

The disturbance on the vehicle is maximized when

() 02
0

2
00 =−= rxxmoment

dx
d (2.6.6)

This happens when x0=0, that is, when the tank is half full. By combining equations (2.6.3) and
(2.6.5) we can solve for the slosh mass distance from the tank center xs

()






 −

−
=

3
4 0

2

22
0

2
0

hrh

xrxs (2.6.7)

As an alternative approach to calculating max disturbance conditions, let us assume that the
liquid mass is spinning inside the tank. It is obvious to assume that the disturbance on the vehicle
is maximized when the moment of inertia (Islosh) of the liquid mass about the center of the tank is
maximized, where:

()









−+=









−=−= ∫

3515
2

53
3
0

2
0

5
0

5
0

532
022

0
2

0

0

0

0

xrxrI

xxrdxxrxI

slosh

r

x

r

x
slosh

πρ

πρπρ
 (2.6.8)

The slosh moment of inertia is maximized when

() 02
0

2
0

2
0 =−= rxxI

dx
d

slosh (2.6.9)

This happens again when x0=0, and the fuel height 0rh = , that is, the worst disturbance condition
is when the tank is half full. In this case the pendulum length, or the slosh mass distance from the
center from equation (2.6.7) is

08
3 rr = (2.6.10)

In our subsequent slosh analysis, therefore, we shall assume that the fuel tank is half full, and the
sloshing pendulum mass is equal to half of the full tank mass, and the soft pendulum length (r) is
only 3/8 of the actual tank radius (r0).

64

2.6.2 Zero-g Non-Linear Slosh Model

The acceleration (at) of the spacecraft at the center of the tank is

CGstnkssbst lxldwhereada −+=+×−= :ω

Where:
ds is the distance of the slosh mass from the spacecraft CG,

bω is the spacecraft angular acceleration,
as is the spacecraft translational acceleration at the CG.

When the pendulum string is stretched, the tension at the string Fst can be expressed by the
following equation

()
()
() frictionviscousaxialuxk

deflectiontodueforcespringlinearnonk
massofrateangulartodueforcelcentripetarmF

sd

s

sst

11

2

•+
−+

+=





δδδ
θδ

Where:
θ is the angular rate of the pendulum relative to tank,
ks(δ) is the non-linear spring constant of the sluggish mass which is a function of spring
 displacement (δ), 2

2
1 ccks += δ

kd1 is the axial damping coefficient
sx is the slosh mass velocity relative to the tank, dotted with

u1 which is the unit vector from the tank center to the slosh mass

s

s

x
xu =1

The inertial acceleration of the slosh mass consists of two components, the acceleration of the
mass relative to the tank sx , plus the inertial acceleration of the tank at, and it is the result of axial
forces from the string along u1, plus viscous forces as it rotates around rubbing against the inside
of the tank along u2.

() () 221 ukuFaxm dsttss θ −−=+

Where:
kdv is the tangential damping coefficient of the mass as it slides along the surface
 creating a force parallel to the surface resisting the mass motion along u2
u2 which is the unit vector parallel to the surface in the velocity direction

()[]112 uuuu
x
xu v

s

s
v ××==





The disturbance force on the spacecraft Fs/c is equal and opposite to the force on the slosh mass
and the torque on the spacecraft is obtained by cross-multiplying Fs/c with the distance ds of the
slosh mass from the spacecraft CG.

65

()
() CGstnkscsscs

dstcs

lxldwhereFdT
ukuFF

−+=×=
+=

://

221/ θ

The velocity and position of the slosh mass ms with respect to the tank are obtained by
integrating the slosh mass acceleration starting from velocity and position initial conditions v0
and p0

∫∫ +=+=
t

ss

t

ss dttxpxdttxvx
0

0
0

0)()(

The slosh mass angular rateθ is obtained by resolving the slosh mass velocity sx along the u2
direction. The pendulum angleθ is a function of the x-direction component of vector u1.

()[]1cos 1
1

2 uu
r

xs −=•







+
= θ

δ
θ



2.6.3 Implementing and Testing the Zero-g Slosh Model alone

Before coupling the slosh equations with the spacecraft dynamic model we are going to create a
separate zero-g pendulum slosh model “Slosh.mdl”, shown in Figure (2.6.2). This system will be
used to test the slosh dynamics alone under the influence of external forces, starting from an
initial condition of ms. The slosh equations are implemented in Matlab function “Slosh_0g.m”.
The inputs to the Simulink model are: spacecraft rotational acceleration vector, and translational
acceleration vector at the CG, coming from the vehicle dynamic model. The spacecraft
accelerations induce forces on the mass and opposite reaction forces on the vehicle. The slosh
mass acceleration relative to tank sx is integrated twice to calculate the mass velocity and
position relative to the tank. The model output is the reaction force vector which is applied to the
vehicle model at the center of the tank. The forces are applied only when the spring is stretched,
that is, 0>δ . The file “start.m” loads the tank mass properties and initializes the mass position
and velocity relative to the tank. The file “plsl.m” plots the simulation parameters.

69

Now that we have developed our rigid-body and flex spacecraft models, and we have
successfully analyzed the fuel minimization algorithm in both rotational and translational
directions, and also tested the zero-g slosh model, the next step is to integrate all these models
together in a 6-dof simulation that will be used to analyze the simultaneous, attitude and
translation control while sloshing. Actually, we are going to develop two integrated models, a
linear, and a non-linear model for comparison. The simulation files in this analysis are located in
folder “C:\Flixan\Examples\Flex Agile Spacecraft with SGCMG & RCS\Reaction Control
System Analysis\(h) NonLin RB+Slosh+Flex 6-dof RCS Attitude Control”. The file “start.m”
initializes the spacecraft parameters. The slosh mass is initialized with an initial position xs0, and
velocity xsd0 relative to the center of the tank.

2.7.1 Linear 6-dof Model with Slosh and Flex

The linear Simulink model is in file “Sim_Lin_Flex_Slo_6dof.mdl”, and shown in Figure (2.7.1).
For spacecraft dynamics it uses the discrete state-space model file “flex-spacecraft-fem_z.m”,
title: “RB+Flex Spacecraft with RCS and CMG (Z-Transf)”, which has 6 rigid-body modes and
40 flex modes, and was created using the flex spacecraft modeling program.

6-dof
Jet-Select

Logic

pos

v el
dVc

Translational
Phase-Plane

[40 0 0]*1

Translation
Command (feet)

rate

ater
dwc

Rotational
Phase-Plane

dWc

dVc
Fjet

Jet Select

Fjet

Feng

wb #2

atti

pos

dV

Flex
Spacecraft

[1 -2 3]*0

Attitude Change
Command (deg)

-K-

angular rate

rotational attitude

v elocity

translational position

Figure 2.7.1 Min Fuel 6-dof Simulation Model “Sim_Lin_Flex_Slo_6dof.mdl” that includes Slosh and
Flexibility

The model uses the two separate rotational and translational phase-planes and the 6-dof fuel
minimizing jet selection logic that was described in Section (2.5). The simulation is running at 5
msec, and the phase-planes are running at 100 msec. Figure (2.7.2) shows the spacecraft model

74

2.7.2 Non-Linear 6-dof Model with Slosh and Flex

The non-linear Simulink model is in file “Sim_NonLin_Flex_Slo_6dof.mdl”, shown in Figure
(2.7.3). This model uses quaternion for attitude control and calculates a quaternion error for
attitude feedback. The quaternion command (left) is calculated by combining the commanded
angle of rotation and the rotation axis, see Figure (2.7.4). The attitude feedback signal (qe)
consists of the 3-dimensional vector part of the quaternion error. For small angles qe= half the
attitude error vector.

6-dof
Jet-Select

Logic

pos

v el
dVc

Translational
Phase-Plane

[5 15 -10]*0

Translation
Command (feet)

rate

ater
dwc

Rotational
Phase-Plane

Qf

Qc
qe

Quat Error

Frcs

Feng

Tdist

wb #2

quat

pos

dV

Non-Linear Rigid
& Flex Combined

dWc

dVc
Fjet

Jet Select
Qcom

Command
30 deg

angular rate

quaternion attitude

v elocity

translational position

Figure 2.7.3 Min Fuel 6-dof Simulation Model “Sim_NonLin_Flex_Slo_6dof.mdl” that includes Slosh and
Flexibility

1
Qcom

sin

sin(Q/2)

com_dir

direction command

cos

cos(Q/2)

-K-

Q/2

Matrix
Multiply

Product

50 deg
Step

Figure 2.7.4 Quaternion Command Generator

The spacecraft dynamics is shown in Figure (2.7.5). It consists of two dynamic systems in
parallel with the slosh model in the feedback path. It uses the 6-dof non-linear rigid-body
dynamics which is implemented in Matlab function “RB_Dynamics.m”. From the forces and
moments this function calculates the velocities, angular rates, and integrates the quaternion from

84

During reboost the spacecraft fires the main engine to modify its
altitude or change orbit. The ACS points the spacecraft in a proper
orientation, the main engine ignites, and the RCS attempts to keep
it at constant attitude or a slowly varying attitude during the
orbital maneuver. We assume of course that the RCS can provide
enough torque to correct any attitude errors that may occur due to
misalignment of the thrust vector from the spacecraft CG. The
translation control system is obviously turned off during this phase
since we are constantly accelerating. The acceleration causes the
fuel to accumulate towards the engine at the bottom of the tank,
and any lateral disturbance causes sloshing which generate
oscillatory disturbances on the spacecraft. The fuel dynamic
behavior resembles that of a simple pendulum. When the desired
orbit is reached the main engine is turned off and the ACS
switches to a different mode of operation. In this section we will
analyze a couple of accelerating reboost models: a linear model
that includes a linear pendulum slosh model, and a non-linear
model coupled with slosh and structural flexibility. The simulation
files for this analysis are in folder: “C:\Flixan\Examples\Flex
Agile Spacecraft with SGCMG & RCS\Reaction Control System Analysis\(i) Orbital
Maneuvering-Reboost Phase”. The file “start.m” initializes both simulation models.

2.8.1 Linear Reboost Simulation Model

The linear Simulink model for the reboost phase uses the state-space system that was generated
using the Flixan “Flight Vehicle Modeling Program” in Section 1.2. Its title is “Flexible Agile
Spacecraft, Reboost Model (Z-Transf)” and it was saved in file “reboost_fvp_z.m”. In this case
we are not using the complex zero-g slosh model wrapped around the spacecraft dynamics as in
the previous zero-g case. This system is slightly different from the zero-g version used earlier
because in this accelerating case the slosh dynamics simplifies to a linear pendulum resonance
that can be included inside the vehicle state-space system. The pendulum frequency and other
parameters are defined in the vehicle input data file. Also, in this case, the vehicle acceleration
was set to 0.5 (ft/sec2) in the x direction to capture the constant firing of the reboost engine.
Otherwise, the program will not accept a slosh resonance when the vehicle acceleration is zero.
Note, that in the vehicle data the slosh frequency is specified at 1g, (32.2 ft/sec2) because it is
usually known at 1g. The program adjusts the slosh frequency according to the total linear
acceleration.

The simulation model for this linear case is in file “Sim-Lin-Reboost-fvp.mdl”, shown in Figure
(2.8.1). It uses the fuel optimal attitude control logic described earlier. There is no translation
control during reboost. The flex spacecraft system with slosh is in Figure (2.8.2). The simulation
results are shown in Figure (2.8.3). The spacecraft is commanded to maintain a constant zero

85

attitude during reboost. The engine thrust is constant throughout the simulation at 110 (lb). There
is a repetitive RCS jet firing for counteracting the torque generated due to engine and CG
misalignment. The RCS is holding the spacecraft attitude error below 0.5 (deg) defined by the
dead-band.

110

Reboost Engine
Force (lb)

rate

ater

Fjet

Phase-Plane
Jet-Select

Fjet

Feng

wb1

atti

Flex Spacecraft

(0 0 0)

Attitude
Command

= 0

-K-

Figure 2.8.1 Linear Reboost Simulation Model “Sim_Lin_Reboost_fvp.mdl”

Flex Spacecraft Dynamics
with Slosh (from FVP)

% Outputs = 26
% 1 Roll Attitude (phi-body) (radians)
% 2 Roll Rate (p-body) (rad/sec)
% 3 Pitch Attitude (thet-bdy) (radians)
% 4 Pitch Rate (q-body) (rad/sec)
% 5 Yaw Attitude (psi-body) (radians)
% 6 Yaw Rate (r-body) (rad/sec)
% 7 Angle of attack, alfa, (radians)
% 8 Angle of sideslip, beta, (radian)
% 9 Change in Altitude, delta-h, (feet)
% 10 Forw ard Acceleration (V-dot) (ft/sec)
% 11 Cross Range Velocity (Vcr) (ft/sec)

% 12 Gyro # 1, Roll Attitude (Body) (radians)
% 13 Gyro # 2, Pitch Attitude (Body) (radians)
% 14 Gyro # 3, Yaw Attitude (Body) (radians)

% 15 Rate-Gyro # 4, Roll Rate (Body) (rad/sec)
% 16 Rate-Gyro # 5, Pitch Rate (Body) (rad/sec)
% 17 Rate-Gyro # 6, Yaw Rate (Body) (rad/sec)

% 18 Rate-Gyro # 7, Roll Rate (Body) (rad/sec)
% 19 Rate-Gyro # 8, Pitch Rate (Body) (rad/sec)
% 20 Rate-Gyro # 9, Yaw Rate (Body) (rad/sec)

% 21 Accelerom # 1, (along X), (ft/sec^2) Translat. Acceler
% 22 Accelerom # 2, (along Y), (ft/sec^2) Translat. Acceler
% 23 Accelerom # 3, (along Z), (ft/sec^2) Translat. Acceler

% 24 Accelerom # 4, (along X), (ft/sec^2) Translat. Acceler
% 25 Accelerom # 5, (along Y), (ft/sec^2) Translat. Acceler
% 26 Accelerom # 6, (along Z), (ft/sec^2) Translat. Acceler

% Inputs = 13
% 1 BR-Y+Z dTh/Th for RCS Jet No 1 (-)
% 2 BL+Y+Z dTh/Th for RCS Jet No 2 (-)
% 3 FR-Y-Z dTh/Th for RCS Jet No 3 (-)
% 4 FL+Y-Z dTh/Th for RCS Jet No 4 (-)
% 5 FR-Y+Z dTh/Th for RCS Jet No 5 (-)
% 6 FL+Y+Z dTh/Th for RCS Jet No 6 (-)
% 7 FRAxi-X dTh/Th for RCS Jet No 7 (-)
% 8 FLAxi-X dTh/Th for RCS Jet No 8 (-)
% 9 BR-Y-Z dTh/Th for RCS Jet No 9 (-)
% 10 BL+Y-Z dTh/Th for RCS Jet No 10 (-)
% 11 BRAxi+X dTh/Th for RCS Jet No 11 (-)
% 12 BLAxi+X dTh/Th for RCS Jet No 12 (-)

% 13 Engine Force Direction: (1, 0, 0)

0 or 1
2

atti

1
wb1

wb2

wb1

wb

wb
time

time

-K-

r2d

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

flex_spacecraft
(Z-domain)

atti

atti

att

acc2

acc1

Term

Clock

2
Feng

1
Fjet

3

acc1

3

3

3nt

11

Figure 2.8.2 Spacecraft dynamic model with slosh created using the FVP

86

Figure 2.8.3 Simulation Results from the linear reboost system with slosh

88

Figure 2.8.5 Non-Linear Reboost Simulation, Vehicle Response in Various Locations

90

The Describing Function (DF) is a very powerful frequency domain method for evaluating the
stability margin of a non-linear control system, determining the existence of limit cycles, and
also for designing filters to attenuate resonances and to shape the control system’s frequency
response in order to improve stability margin and to prevent limit-cycles. Limit cycles are
sustained oscillations caused by non-linearities. We are not concerned with rigid-body limit-
cycles because there is always going to be some degree of rigid-body limit-cycling. We are more
concerned with limit-cycles which are caused due to structure flexibility excitation. It is very
important, therefore, to achieve sufficient gain and phase margin in flex mode resonances in
order to prevent structural limit-cycling because they are very undesirable. They use up a lot of
fuel, corrupt measurements, spacecraft performance, and they cause structural damage due to
metal fatigue. In the classical Describing Function methodology we separate a single-input-
single-output (SISO) control systems in two parts: (a) the linear G(s) part which is a function of
frequency (ω), and (b) the non-linear N(e) part which is a function of the error signal amplitude
(e). Then we solve the feedback equation 1)()(=eNjG ω by using Nichols or Nyquist
diagrams. Intersections of the G(jω) locus with the -1/N(e) locus indicate the possibility of limit-
cycles, but not every intersection defines a sustained oscillation. There are convergent limit-
cycles and divergent limit-cycles, and they usually alternate. We are not concerned with
divergent limit-cycles because they do not sustain an oscillation. We are only concerned with the
convergent limit-cycles. The convergent limit-cycle amplitude and frequency can be obtained
approximately from the loci intersections. The amplitude is obtained from the 1/N(e) locus, and
the frequency is obtained from the G(jω) locus which are both co-plotted on a Nichols or a
Nyquist plot.

It is not straightforward, however, how to apply the DF method in a typical RCS phase-plane
system and requires some simplifications and assumptions. The classical DF method is
applicable only to SISO systems, and it assumes that the DF of the non-linearity N(e) is a SISO,
and a function of only amplitude but not frequency. In our situation, however, the control system
structure is a little different and requires some assumptions to be made and block diagram
manipulations in order to shape it in a form where the DF method can be applied. To start with,
our phase-plane controller is unconventional because it has two inputs and one output. If we
assume, however, that during limit-cycling the inputs are approximately sinusoidal, the two
inputs: rate and attitude errors are related because the attitude error is the integral of the rate,
hence, we can reduce the phase-plane inputs to only one input, the body rate and integrate the
rate to get attitude. Any sustained limit-cycle generates a pattern in the phase-plane symmetric
about the origin, producing, therefore, a periodic output torque with zero average, as shown in
Figure (2.8.6).

91

Figure 2.8.6 Sustained Limit-Cycle Trajectory in the Phase-Plane

The next problem to overcome is the fact that the output from the jet selection logic consists of
multiple jet forces (Fjet). Remember, we need to separate the G(s) part from the N(e) part and,
therefore, we must break the control loop at two points. One obvious point to separate the
systems is at the spacecraft rate output which is the input to the non-linearity. We must also
break the loop at the output of the non-linearity which is 12 jet forces. But it is not convenient to
break the control loop at the jet force for stability analysis because the DF method requires a
breaking point at a scalar, not a vector. One step closer to our goal is to transform the jet forces
into torques (T) in the non-linear control system output and break the loop at the torque output.
This transformation creates two separate (3x3) systems in a feedback loop, a non-linear part N(e)
and a linear part G(s) that connect to each other by means of roll, pitch, and yaw rates and roll,
pitch, and yaw torques, as shown in Figure (2.8.7). By cutting the loop at the torques it reduces
the number of outputs to 3 instead of 12. The spacecraft plant inputs in this case must be torques
(T). Now, each axis can be analyzed separately using the DF method, and that is not just roll,
pitch, and yaw, but other skewed axes in between, because each direction uses a unique set of
thrusters and excites the structure differently. The spacecraft torque is related to the jet forces by
the following equation

 jett FVT =

Where:

() ()
()tp

jjjjt

VinversepseudoV
ulvwherevvvV

_

:...21

=

×==

92

where:
lj is the thruster (j) location relative to the spacecraft CG
uj is the thrust direction for a thruster (j)
vj is the torque on the spacecraft created by thruster (j)

But if the new plant input is torque, this torque it must be converted back into jet forces because
the original plant model requires forces and, therefore, we use the pseudo-inverse of (Vt), Vpinv,
to create pseudo forces to the plant input from torques, TVF pinvjet =' .

These forces will not be the same as the original forces Fjet, but they will produce the same
amount of torque on the spacecraft. The biggest difference is that F’jet does not excite the
structure the same way as the original Fjet, but this is acceptable if we assume that the structure is
sufficiently stiff between the jets, and that flexibility is mainly due to the appendages, such as,
solar array, antennas, etc. It is, therefore, be acceptable to drive the plant input with F’jet instead
of the actual jet forces Fjet, as long as both force excitations create the same torque. Figure (2.8.7)
shows the two (3x3) feedback interconnected systems: a non-linear (orange) block containing the
controls and a linear spacecraft dynamics (green) block, interacting by means of torques and
body rates. The attitude command is not shown because it does not affect stability.

Torques
Matrix

Pseudo-Inverse
Torques
Matrix

Non-Linear
Dynamics Linear Dynamics

K*u

Vti

K*u

Vt

rate Fjet

Phase-Plane
Jet-Select

Fjet wb

Flex
Spacecraft

Torques

Figure 2.8.7 Modified Non-Linear System used for Describing-Function Analysis

The next step is to separate the above (3x3) systems to individual SISOs and analyze the
dynamic motion and stability as if the spacecraft is excited and can move only in one direction at
a time. The assumption is that since the system is strongly diagonally dominant by the selection
of the jets, if it is stable in all individual SISO directions, it will also be globally stable when it is
fully coupled. Let us assume, for example, that we are analyzing the pitch axis. We must first
create a pitch SISO plant model by applying a scalar torque in pitch and measure the vehicle
response only in pitch, as shown in Figure (2.8.8). Similarly, we can create a roll plant by
changing the rotation input vector to (1 0 0), or a yaw plant (0 0 1), or a plan in any skewed
direction, ex. (0.2 -0.4 0.5), defined by the rotational vector. We are ignoring, of course, the
cross-coupling between axes in order to be able to use the DF method, but if the jets are properly
selected the cross-axial coupling is negligible. So we can use the model in figure (2.8.8) to
calculate the frequency responses of the plants G(s) in many different directions. The input is a
scalar torque which is converted into vector torque in a specific direction and the output is a
scalar body rate which is obtained from the spacecraft rate vector resolved in the same direction.

93

This plant model connects with the phase-plane non-linearity of which we shall calculate its DF
using Simulink.

Figure 2.8.8 Plant Model Resolved in a Single Direction (pitch shown above)

Calculating the Describing Function of the Phase-Plane Non-Linearity

We can also apply the same approach to decouple the non-linear control system to behave like a
SISO system in a specific rotational direction. Figure (2.8.9) shows the phase-plane non-linearity
converted into a SISO Simulink block. The input is a scalar body rate feedback coming from the
SISO vehicle model. It is converted to a vector (pitch rate in this example), and it is integrated to
obtain attitude. We are assuming that the signal is sinusoidal since we are examining the
possibility of limit-cycling. Attitude and rate errors drive the phase-plane (which is running
slower, at 100 msec) and it generates the rate commands to the jet selection logic. The jet
selection logic generates the jet forces, which turn-off sequentially during the 100 msec control
cycle, and generate the control torque (T) after multiplying the acceleration matrix with the jet
forces, jett FVT = . The torque vector (T) is then resolved in a specific direction, pitch in this
example, since the input rate was also in pitch. The model in Figure (2.8.9) is used to calculate
the DF of the phase-plane and jet-selection logic together using Simulink. The direction of
motion is defined by the rotation vector. Notice, that because of the integrator the DF in this case
N(e,ω), is a function of both, error amplitude and frequency.

Phase-Plane
Logic

100 msec

Rate Change
Command

dw(3)

3-dof
Jet-Select

Logic

5 msec

5 msec

Scalar Rate from
Spacecraft Model

Output Torque
Generated in
Specified Direction

1
trq

(0 1 0)

rotat vector

rate * u 1
s

int K*u

Vt

V U

Unit
Vect

RT

RT3

RT

RT2

RT

RT1

wdc Fjet

Jet Select

Dot
Product

MATLAB
Function

3-dof-Rot
Phase-Plane

1
rate

Jet Forces

Unit Direction

Figure 2.8.9 Non-Linear Control System Resolved in a Single Direction (pitch)

100

Stability Analysis Using the DF

The sampling frequency of the control loop is at 10 Hz and, therefore, in the DF analysis the
plant should be sampled at 10 Hz. In the DF analysis we co-plot the Nichols of the G(s) with the
-1/N(e) locus and hope that there are no intersections. The DF in this case is frequency
dependent and it would require a 3-d illustration but we can take advantage that the -1/N(e) does
not vary much with frequency. We can plot only a few of the loci, -1/N(e,ω1), -1/N(e,ω2), -
1/N(e,ω3), where ωi correspond to some of the big resonances, that stick out, such as slosh and a
couple of appendage modes below 5 Hz and overlay them with the G(s) of the linear plant. This
analysis must be repeated for at least 3 directions separately, roll, pitch, yaw, plus a few
additional skewed directions, but we are only showing a couple cases. The file “run_freq”
discretizes the two Simulink models “Open_Loop_FEM.mdl” and “Open_Loop_FVP.mdl” and
calculates the Nichols plots shown in Figure (2.8.15) for roll and yaw. The Describing Function
overlay was done manually from the plots in Figure (2.8.12). There is a slight difference in the
size of the slosh resonance between the models, appearing in the roll direction. The results
clearly indicate that this system is not threatened by limit cycles in neither direction. In fact, all
resonances are well behaved in phase, exhibiting min-phase type behavior.

101

101

This section provides a detailed tutorial on designing spacecraft Attitude Control Systems using
Single-Gimbal Control Moment Gyros devices. We will use the same spacecraft model that was
described in the previous section using RCS and design an alternate ACS that uses SG-CMGs.
The ACS consists of a cluster of four SG-CMGs mounted together on a solid structure near the
center of the spacecraft. They are controlled by a non-linear Max Energy control logic that
attempts to use the maximum control torque and momentum capability of the CMG devices to
improve (in comparison with linear controls) the spacecraft ability to maneuver. The control law
also uses a steering logic that prevents CMG singularities. Singularities or “gimbal locks” occur
when the SGCMG cluster cannot provide torque in a required direction. In the following sections
we will discuss the SGCMG dynamics, the equations of motion of a spacecraft with SG-CMGs,
design the control and steering laws, and describe the simulation models. We start with simple
rigid-body models that exclude the CMG gimbal dynamics and the flexibility of the structure,
and we gradually upgrade the models with more details. We finally analyze a low cost
configuration that uses a combination of one reaction wheel and two CMGs. The flex spacecraft
models are created using two separate Flixan modeling programs for comparison.

102

A single gimbal control moment gyroscope (SGCMG) is shown in Figure 3.1. It consists of a
spinning rotor that is mounted on gimbal perpendicular to the rotor axis. The rotor spin rate is
maintained at a constant speed by a small motor that produces a constant angular momentum
(hcmg). The momentum direction can be rotated by a stronger motor which is mounted at the
gimbal. The gimbal motor controls the gimbaling rate, and hence the output torque. By
commanding the gimbal to rotate (by means of a servo system that controls the gimbal motor),
high precession torques are generated by changing the orientation of the angular momentum
vector. The reaction torque on the spacecraft (T) is equal and opposite to the rate of change in
momentum vector h , which is orthogonal to the momentum vector and the gimbaling vector
according to the right hand rule. At any instant it is a function of the gimbal position. In fact the
torque magnitude is equal to the CMG momentum multiplied by the gimbal rate. A CMG
generates much greater torques than a reaction wheel and for this reason it is very attractive in
high torque and fast maneuvering spacecraft applications. Notice also, that the SG-CMGs
generate the high precession torques without requiring high power.

Figure 3.1 Single-Gimbal Control Moment Gyro

Another attractive feature of CMGs compared with reaction wheels is that the rotor in a CMG
spins at a constant rate which places the vibrations at known frequencies while in a RW, the rotor
speed changes, thus, exciting the spacecraft structure in multiple frequencies which may not be
desirable in precision applications. CMGs, however, are complex systems, expensive, and
require complex controls with singularity avoidance algorithms. Figure 3.2 shows a picture of a
SG-CMG. It consists of a rotor that spins at a constant high rate about an axis that can be rotated.
There is also a torque motor assembly that rotates the rotor about a gimbal axis that is fixed
relative to the spacecraft, and a position sensor that measures the gimbal rotation relative to the
spacecraft.

103

Figure 3.2 Single Gimbal Control Moment Gyro

104

The momentum of the CMG due to the spinning rotor and due to the rotation of the other axes in
the Gimbal, Output, and Spin axes is

()
()
















++
−=

















δφδθ
δθδφ

δ

sincos
sincos

0






s

o

ig

s

o

g

Jh
J

J

h
h
h

 (3.1)

Figure 2.3 defines the orientation of a Single Gimbal CMG with respect to the spacecraft
reference axes. The rate of change of momentum which is the moment generated by a SGCMG
in the Gimbal, Output, and Spin axes respectively as a result of gimbaling and base motion are:

() ()()
() ()() 
















−−+−+++Ω
+−++−−−=

















δθδφδδδθδδφδφδθ
δφδθδδδθδδθδδφδφ

sincossincossincos
sincossincossincos 0





ogiiis

gsiiiio

gi

S

O

G

JJJ
JJhJ

T

M
M
M

 (3.2)

The reaction torque on the spacecraft is minus [MG, MO, MS]

Where:
Jg is the CMG inertia about its gimbal axis
Jo is the CMG inertia about its output axis
Js is the CMG inertia about its spin axis
Tgi is the torque applied by the torque motor at the gimbal

iδ is the gimbal inertial angular acceleration including spacecraft
δ is the CMG gimbal rotation about the m axis with respect to spacecraft r axis
h0 is the constant CMG momentum about its spin axis (IsΩ)
Ω is the rotor spin acceleration
θ is the vehicle rate in the CMG r axis
φ is the vehicle rate in the CMG q axis

105

Figure 3.3 Orientation of a CMG in Spacecraft Coordinates

The rotation rates of the CMG axes can be related to the spacecraft body rate. If ω is the
spacecraft body rate vector (ωX , ωY , ωZ), the following relationships resolve the spacecraft rates
about the CMG axes: (r, q, m). φθ  and are the spacecraft rates resolved about the CMG
reference and quad axes. The gimbal rate iδ in addition to the gimbal rate relative to spacecraftδ
it includes also the spacecraft rate about the CMG gimbal.

βωγβωγβωδδ

βωγβωγβωφ

γωγωθ

coscossinsinsin

sincoscossincos

sincos

ZYXi

ZYX

YX

+−+=

++−=

+=







 (3.3)

106

The following projection matrix (P) transforms the CMG torques from CMG axis to spacecraft
axis.
































++−−
−−−

=
















S

O

G

Z

Y

X

M
M
M

M
M
M

βδβδβ
γβδγδγβδγδγβ
γβδγδγβδγδγβ

sinsinsincoscos
coscossinsincoscoscoscossinsincossin
sincossincoscossincoscoscossinsinsin

When CMGs are used to steer spacecraft, at least three CMGs are needed to provide 3 axes
control. If we consider an array of SGCMG mounted on the surfaces of a pyramid with their
gimbal axes directions (mi) perpendicular to the corresponding surface and the momentum
direction (hi) always aligned with the surface of the pyramid as the gimbal σi rotates. The output
torque from each CMG is equal to the rate of change of angular momentum which is in the (mi x
hi) direction and proportional to the gimbal rate iδ . From the pyramid surfaces orientations we
can calculate some important matrices that will be used in the equations of motion.

Figure 3.4 Array of five CMGs in a Pyramid Configuration

107

Let us consider the CMG pyramid arrangement presented in this example shown in Figure 3.5.
The spacecraft has four SGCMGs which are mounted to the four faces of a four sided pyramid.
All CMGs have the same angular momentum, hcmg=1200 (ft-lb-sec) about their spin axis. Their
CMG momentum vectors (hi) can be rotated about the gimbal vectors (δi), which are
perpendicular to each surface, and they are constrained to lay parallel to the surface of the
pyramid. The pyramid angle β is 68 (deg), and the γi angles of the four surfaces, according to
figure (2.3), are: (90º, 180º, 270º, and 0º). The columns of the following (3x4)
matrix b

gM contains the four gimbal direction unit vectors mi. It is a gimbal to body
transformation matrix.

[]
















−

−
=
















−

−
=
















−==

375.0375.0375.0375.0
927.00927.00
0927.00927.0

coscoscoscos
sin0sin0
0sin0sin

cos
cossin

sinsin
:4321

ββββ
ββ

ββ

β
γβ

γβ

M

mwheremmmmM

i

ii

ii

i

 (3.5)

The (3x4) matrix [R] represents the momentum reference directions. That is, the initial directions
ri of the momentum vectors hcmg(i). More precisely, are the momentum directions when the
gimbal angles (δi) are at zero. The initial gimbal angles δ0i=0 to provide zero momentum bias.

[]















−

−
=
















==

0000
0101
1010

;
0

sin
cos

:4321 RrwhererrrrR i

i

i γ
γ

 (3.6)

We must also define a (3x4) matrix Q, containing column vectors of the cross product direction
unit vectors (qi).

[] ()
















=

×==

0.9270.9270.9270.927
0.37500.375-0

00.37500.375-

;;
4321

Q

rmqqqqqQ iii

 (3.7)

Notice, that the pyramid structure is only used for visualization. The CMGs do not have to be
physically mounted on the four surfaces of an actual pyramid, as in Figure 3.5, but they can be
translated anywhere on the spacecraft as long as their gimbal axes (mi) and their reference
momentum vectors (ri) are parallel to the directions shown in the pyramid. See, for example, the
CMG cluster in Figure 3.6. The CMGs are typically mounted on a structure that it is
mechanically isolated from the spacecraft by means of vibration isolation struts, as shown in
Figure 3.6, that attenuate vibrations from the CMGs.

108

Figure 3.5 Array of four CMGs in a Pyramid Configuration

Figure 3.6 A Cluster of four Single Gimbal CMGs mounted on a pyramid structure which is isolated from the
spacecraft by means of disturbance isolation struts

116

Attitude Control System Description

The maximum energy control system block diagram is shown in Figure 3.3.2. It consists of an
inner rate control loop (D) and an outer (PI) attitude control loop. The CMG array steering logic
is also included in the rate control loop. The inner rate control loop must be designed first. It
receives a body rate command from the attitude controller and regulates the vehicle rate by
issuing acceleration commands to the RW steering logic. If the bandwidth of the rate loop is
sufficiently high to keep up with the body rate command then we can assume that (cωω ≈) and
continue with the outer loop.

Inner Rate Loop

The rate control loop regulates the spacecraft rate. It receives (roll, pitch, and yaw) rate error
commands which become acceleration commands that drive the CMG steering law. The steering
law generates the CMG gimbal rate commands (comδ). An acceleration limiter (AL) is included
in the rate loop that prevents the CMG torque commands from exceeding their maximum torque
capability. The steering law is given in equation (3.3.4). It uses a pseudo-inverse of matrix A
which is defined in equation 3.15 and it is a function of the gimbal angles δi

()[] com
TT

com

com
comcomcom

errrcom

JEAAA

ALALif

k

ωλδ

ω
ωωω

ωω








+−=

=>

=

−1

, (3.3.4)

Depending on the orientation of the gimbal angles δi the pseudo-inverse matrix may become
singular. To avoid the singularity, the pseudo-inverse matrix is modified using a singularity
avoidance logic (λE), where:

)det(
1)

2
sin(01.0)

2
cos(01.0

)
2

sin(01.01)sin(01.0

)
2

cos(01.0)sin(01.01

TAA
kand

wtwt

wtwt

wtwt

E =























−+

−

+

= λ

ππ

π

π

Where: w and k are properly selected. The singularity avoidance logic checks the condition of
the A matrix and introduces a small perturbation to prevent a gimbal lock. When the matrix A is
moving towards a singularity the perturbation rotates around it. The closer to a singularity the
bigger the perturbation gets.

117

Attitude Control Loop

The input to the attitude control loop is the attitude error, or more precisely, quaternion error.
The attitude error signal goes to the PI controller that operates in two modes based on the switch
ky which is either set to zero or one. During maneuvering (when ky=1) the controller becomes a
simple proportional gain Kp. Otherwise, during PID mode, (that is when ky=0) the block becomes

a PI transfer function
s

bsK P
+ that provides better tracking and disturbance attenuation at low

frequencies. The switch setting is controlled by a signal that is a combination of rate plus attitude
error. In the beginning of the maneuver when this error signal is large ky is set to 1. When the
error signal drops below a certain value ky is set to zero and the integrator is turned on.

Figure 3.3.2 Block Diagram of Maximum Energy Control System

The energy manager block shapes the velocity command as a function of the attitude error in
order to bring the phase-plane trajectory directly to zero without chattering, according to the
parabolic switching line in equation (3.3.3). This maintains a proportional attitude error
reduction in all directions throughout the maneuver. The velocity limiter in series with the
energy limiter bounds the vehicle rate during the acceleration phase of the maneuver. It also
bounds the CMG momentum during maneuvering preventing it from reaching saturation levels.

118

In this section we are presenting simulations and analysis of the agile spacecraft controlled by an
array of four SGCMG. We start with a simple rigid-body simulation model that uses equations
(2.13) and is assuming that the gimbal rates are equal to the gimbal rate commands coming from
the steering logic. The CMG momentum is calculated from equation (3.14) as a function of the
gimbal angles. The gimbal rate commands are calculated by the steering logic which was
described in equation 3.3.4. The control torque on the spacecraft is ()[]δδ AT con −= . This
model is used for initial evaluation of the control law before advancing into more complex
models. The second simulation model is still rigid-body uses equations (3.11) and (3.12). The
CMG torque in addition to the control torque Tcon it contains also an estimate of the gyroscopic
torques. The CMG momentum is calculated by integrating the second part of equation (3.11).
The CMG torques are calculated from equations (3.2), (3.4) and (3.10). The gimbal rates are
calculated by integrating equation (3.16). The gimbal torque Tgi is provided by a gimbal torque
motor servo system. The quaternion output is obtained by integrating equation (3.17). The third
simulation model is similar to the second one but it was adjusted to include structural bending.

3.4.1 Max-Energy/ 4 CMG Simple Rigid Body Simulation

Figure 3.4.1.1 shows the Max-Energy Attitude Control System simple simulation model that
uses four Single-Gimbal CMGs. It is implemented in a Simulink file “MaxEn-
NonLin_4SGCMG.mdl” which is located in folder “…\Examples\Flex Agile Spacecraft with
SGCMG & RCS\CMG Control\(a) Simple RigBody 4SGCMG ACS”. It consists of three major
blocks: the Attitude Control System, the inner rate loop and Steering logic block, and the
spacecraft/ CMG dynamics. The ACS receives a quaternion command which is compared with
the spacecraft quaternion attitude to generate the error signal which drives the Steering logic and
rotates the spacecraft.

delta

deldot

wb

quatern

Spacecraft
Dynamics

we

delta

deldot

Singularity Avoidance
& Steering Logic

Qcom

Quaternion
Command
Generator wb

qc

qf

we

Attitude
Control
System

gimbals

rate
error

attitude quaternion

body rates

Figure 3.4.1.1 Max-Energy ACS Simulation Model “MaxEn_NonLin_4SGCMG.mdl”

122

Simulation Results

The initialization file “Start.m” initializes the Simulink models before running the simulations.
This m-file loads the spacecraft mass properties, CMG parameters, and a transformation matrix
Tc2b from CMG to body coordinates. It calls function M4.m to calculate the matrices M, R, and
Q. It defines the CMG gimbal system bandwidth, damping, plus gimbal rate and acceleration
limits. It defines also spacecraft ACS and steering max rate limits and max accelerations, ACS
gains, the singularity avoidance parameters, and the rotation command eigenaxis. The rotation
angle command is defined inside the quaternion command yellow block in the simulation model.
The simulation results in Figure (3.4.1.3) show the ACS response to a 90° maneuver.

Figure 3.4.1.3(a) System performs a perfect rotation about the commanded eigenaxis achieving very small
attitude errors in 20 seconds.

123

Figure 3.4.1.3(b) Max acceleration is used to reach max momentum capability where the vehicle maintains
constant rate until acceleration is reversed to slow it down to its target position.

124

Figure 3.4.1.3(c) System momentum remains constant (zero) throughout the maneuver. At approx. 20 seconds
the PID integrators are turned on to further attenuate attitude errors. The gimbal angles are at constant
positions during the middle section of the maneuver maximizing the spacecraft momentum along the
commanded eigenaxis. The gimbal rates and torques are zero when the momentum is constant.

130

Spacecraft Dynamics Function SC_CMG_Gimbal

function xdot= SC_CMG_Gimbal(x,Tci,Td) % s/c Dynamics with CMG
global J Jinv Jgi m ref quad hcmg d2r r2d
global bet gam Tc2b

% State Variables (x)
% x(1:3) = Body rates (w) (rad/sec)
% x(4:6) = CMG Momentum body (h) (ft-lb-sec)
% x(7:10) = Gimbal rates (delt-dot) (rad/sec)
% x(11:14) = Gimbal angles (delta) (rad)
% x(15:18) = Quaternion
% Inputs:
% Tci(4) = Gimbal Torques (ft-lb)
% Td(3) = Disturbance Torque (ft-lb)

xdot= zeros(28,1);
w = x(1:3); % Body rates
h = x(4:6); % CMG Momentum
deldot= x(7:10); % Gimbal rates
delta = x(11:14); % Gimbal Angles
qt= x(15:18); % Quaternion
[Pj,thd,phd,ddd]= Transforms(bet,gam,delta,w);

Tcmg=zeros(3,1); h2=Tcmg;
for i=1:4
 Mj=[Tci(i); ... % CMG Torque in CMG axis
 hcmg(i)*deldot(i); ...
 0];
 Tcmg= Tcmg -Tc2b*Pj(:,:,i)*Mj; % Torque on Vehicle
% h2= h2 + (cos(delta(i))*ref(:,i) + sin(delta(i))*quad(:,i))*hcmg(i);
end

Hs = J*w + h; % System Momentum

xdot(1:3)= Jinv*(Tcmg -cross(w,J*w) +Td); % Vehicle acceleration
wdot=xdot(1:3); % Vehicle Acceleration
xdot(4:6)=-Tcmg -cross(w,h); % H-dot
for i=1:4
 sd=sin(delta(i)); cd=cos(delta(i));
 xdot(6+i)= (Tci(i)-hcmg(i)*(thd(i)*sd-phd(i)*cd))/Jgi; % Gimbal accelr delt-ddot
 xdot(10+i)= x(6+i); % Gimbal rates delta-dot
end

xdot(15:18)= 0.5*[0 w(3) -w(2) w(1); % Quaternion Update
 -w(3) 0 w(1) w(2);
 w(2) -w(1) 0 w(3);
 -w(1) -w(2) -w(3) 0]*qt;
xdot(19:21)= Hs; % System Momentum Hs
xdot(22:24)= Tcmg; % CMG Torques on Vehi
xdot(25:28)= ddd; % delta_dot (Inert-Relat)

131

Simulation Results

The Simulink model described will be used here to demonstrate a couple of maneuvering
simulations. The simulation and maneuver parameters are loaded into Matlab by the initialization
file “start.m”. In the first case we have a typical maneuver without singularity problems. In the
second case a singularity occurs while maneuvering. The file “pl.m” plots the simulation results.

Simulation 1 A typical 100 (degrees) maneuver (without singularity)

In this case we are commanding the spacecraft to rotate 100º in an arbitrary direction (1, 1, -1).
The algorithm uses a singularity proximity measure, which is the determinant of the TAA matrix.
When this measure becomes very small it is an indication of singularity occurrence. In this case
we hit a low point at 10 seconds but it is not a real singularity. The spacecraft maneuvers
smoothly towards the commanded direction maintaining an almost constant eigenaxis, body rate,
and CMG momentum. The CMG torque and phase-plane show an acceleration pulse in the
beginning and at the end of the maneuver. The deceleration is not as high and lasts longer than
the acceleration. Shortly before the 30 seconds when the error becomes small the “kay” factor
drops to zero which turns on the PID controller that keeps the steady-state error in the 10-7 level.
The four gimbal rates versus gimbal angles are also shown in phase-plane. Notice that the system
momentum is maintained at zero throughout the maneuver.

132

135

3.4.3 Adding Flexibility to the Four CMG Simulation Model

This time we will go one step further and include structural flexibility. The Simulink model in
this example is “MaxEn_4SGCMG_Gimbals_Flex.mdl”, shown in Figure (3.4.3.1). The Matlab
and other data files used are in directory “…\Examples\Flex Agile Spacecraft with SGCMG &
RCS\CMG Control\(c) Flex 4SGCMG ACS w Gimbal”. It is very similar to the previous model,
described in section 3.4.2, but it includes structural bending. The attitude control law and
steering logic are the same, but some of the control parameters were adjusted to accommodate
flexibility. The simulation data are loaded into Matlab by executing file “Start.m”, and the file
“pl.m” plots the simulation results, as in previous examples.

Tc

wf

quat

delta

deldot

Spacecraft
Dynamics

wb

we

delta

deldot

Singularity Avoidance
& Steering Logic

Qcom

Quaternion
Command
Generator

deldc

deldot

Tc

CMG Gimbal
Controlswb

qc

qf

we

Attitude
Control
System

attitude quaternion

rate
error

rates

gimbal rates

gimbal angles

body rate + f lex

Figure 3.4.3.1 Simulation model “MaxEn_4SGCMG_Gimbals.mdl”, consisting of rigid plus flexible
spacecraft dynamics and 4 SG-CMGs

As you can see in Figure 3.4.3.2, the main difference of this simulation model from the previous
one shown in figure 3.4.2.3 is that the spacecraft dynamics (green) block includes flexibility. The
structural flexibility subsystem is a state-space model shown in detail in Figure 3.4.3.3. It is
loaded from file “flex_only_fem_s.m” which was created by Flixan “flex spacecraft modeling
program” in section 1.1 and its title is “Flex Only Spacecraft with RCS and CMG”. It has the
rigid-body modes removed because the rigid-body dynamics is implemented in Matlab function
“SC_CMG_Gimbal.m”, which contains also the CMG dynamics. The coupling between the rigid
and flex models is not straightforward. The 4 CMG gimbal torques drive the rigid-body
dynamics as they are controlled by the 4 gimbal servos attempting to maintain the commanded
gimbal rates. The torque motors have to be strong enough because in addition to the CMG load
inertia they also have to fight the gyroscopic torque ()δφδθ cossin  −cmgh which is not small.

The inertial gimbal rates iδ rotate the CMG momentum vectors generating torques which
produce body rates, and attitudes. The combined CMG torque in vehicle axes (Tcmg) is also

141

Initialization File "Start.m"

The initialization file "start.m" initializes the simulation. It loads the vehicle mass properties in
body coordinates which are transformed to CMG pyramid coordinates, see Figure(). It also loads
the flexibility state-space model, the transformation matrices, CMG parameters, orientation
angles, gimbal rate limits, and gains for the gimbal control system. It initializes also the
spacecraft state-vector, sets torque limits, max acceleration and rate limits, and parameters for
the singularity avoidance logic.

global J Jinv m ref quad hcmg d2r r2d wcmg zeta
global Acc_Lim Rat_Lim kr ki kp Es Ps Fs wlim mx
global bet gam Jgi Jsi Joi
d2r= pi/180; r2d=180/pi;

[Af, Bf, Cf, Df] = flex_only_fem_s; % Load Flex Only Spacecr Dynamics
J= [0.17E+94, -0.16e+93, 0.11E+92; % Vehicle MOI matrix in (slug-ft^2).
 -0.16e+93, 1.32E+94, 0.31E+92;
 0.11E+92, 0.31E+92, 1.41E+94];
Tc2b= [0, 0, 1; ... % Transformation Matrix
 0, 1, 0; ... % from CMG to Body Axis
 -1, 0, 0]; Tb2c= inv(Tc2b);
J= Tb2c*J*Tc2b; Jinv= inv(J); % Convert Inertias to CMG axes
Ctr= Tb2c*[0 1 0; 1 0 0; 0 0 -1]; % Transform Matrix (append to body to CMG
axis)

Jsi= 1.2; Jgi= 0.6; Joi= 0.8; % CMG Inertia about Spin, Gimbal, Outp axes
wcmg=500; zeta= 0.95; lamb=0.5; % CMG servo bandwidth (rad/s), damping coeff
Kii=lamb*Jgi*wcmg^3; % CMG Servo Gains
Ka=(1+2*zeta*lamb)*Jgi*wcmg^2;
Kb=(2*zeta+lamb)*wcmg/Ka;
hcmg=[1, 1, 1, 1]*1200; % CMG Momentum capability

% CMG Geometry
bet=68; % Pyramid Beta angle
gam=[90, 180, 270, 0]; % Pyramid Gamma angles
[m, ref, quad]= M4(bet); % CMG Gimbal, Spin, & Torq direction matrices

sigma0=[0; 0; 0; 0]*d2r; % Initial CMG Gimbal positions (rad)
wb0= [0; 0; 0]; % Initial body rates
h0= [0; 0; 0]; % Initial CMG Momentum (body)
deldot= [0 0 0 0]'; % Initial Gimb Rates
delta = [0 0 0 0]'; % Initial Gimb Angles
Qt0=[0; 0; 0; 1]; % Initial Quaternion
ini= [wb0',h0',deldot',delta',Qt0']; % State Integrator Initialization
wlim= 3.6*d2r; % MaxEn ACS Rate Limit 3.9 (deg/s)
Tmax= 650; % Max CMG Torque 650
mx= Tmax*[1,1,1]./[J(3,3),J(2,2),J(3,3)]; % Max accelerations x,y,z
Acc_Lim=30*d2r; Rat_Lim=12*d2r; % Steer Law Accel & Rate limit (deg/sec)
Tglim=120; Wclim=100*d2r; % CMG Model Gimbal Accelerat and Rate Limits
ki=0.07; kp=1.4; kr=10; % PID Gains: ki=0.3; kp=7.3; kr=12
Es=0.05; Ps=1.0e18; Fs=0.2; % Singul Avoid Param Es=0.01 Ps=1.0e11 Fs=0.2
xlim= inf(1,18); xlim(7:10)=Wclim*[1 1 1 1]; % State Integrator Limits

com_dir=Tb2c*[-1; 1; 1]; % Command Direct Unit Vector (body)
com_dir=com_dir/sqrt(com_dir'*com_dir); % Unit Vector [0.7; -0.6; 0.4]

151

Frequency Response Stability Analysis

The following model “Open_Loop.mdl” is similar to the non-linear simulation model but it has
the control laws linearized and it is used to perform linear stability analysis. It uses the linearized
functions “Lin_ACS.m” for attitude control, and “Lin_Steering.m” for steering. The control loop
is broken for frequency response analysis at the rate error command to the steering logic. Only
two of the control loops, pitch, or yaw, are analyzed. In the yaw analysis example shown in
Figure 3.4.3.8, the yaw loop is opened, but the roll and pitch loops are closed. The Matlab file
“freq.m” calculates the frequency response between the input and the output and plots the Bode
and the Nichols plots. The stability analysis plots are shown in Figure 3.4.3.9. Stability is
measured by the phase and gain margins from the red cross. This model is also used for tuning
the PID gains to maximize stability. The ACS bandwidth was reduced from the previous rigid-
body analysis to avoid exciting low frequency flex modes to instability. Compensator filters were
also included in the ACS. A low-pass filter was also included to filter out the error signal which
turns on the PID to provide a smoother transition between maneuvering and PID control.

1
out

Tc

wf

quat

delta

deldot

Spacecraft
Dynamics

wb

we

delta

deldot

Singularity Avoidance
& Steering Logic

Qcom

Quaternion
Command
Generator

em deldc

deldot

Tc

CMG Gimbal
Controls

wb

qc

qf

we

Attitude
Control
System

-1

-1

1
in

rate f eedback

rates

gimbal rates

gimbal angles

attitude quaternion

rate
err

Figure 3.4.3.8 Simulink Model “Open_Loop.mdl” used for frequency response stability analysis, shown in
this case for yaw axis analysis

152

Figure 3.4.3.9a Bode and Nichols Plots showing stability margins of the Pitch axis PID system

154

In the previous section we used spacecraft and reaction wheel non-linear models developed in
Matlab and then we coupled them with state-space flexibility models that were developed using
the Flixan Flex Spacecraft program. Now we will use the Flixan Flight Vehicle Modeling
Program (FVP) to create similar models of the spacecraft coupled with four single gimbal
CMGs, including structural flexibility, and hopefully the results will match with the results
obtained from the previous section in folder “(c) Flex 4SGCMG ACS w Gimbal”. We will first
show how to obtain the spacecraft state-space models by using the existing data files and running
the FVP in batch mode, and then go into details to show how we create the spacecraft and flex
data from scratch. The data for this analysis is in directory “C:\Flixan\Examples\Flex Agile
Spacecraft with SGCMG & RCS\CMG Control\(e) 4SGCMG using FVP ". The input data file is
"FlexSc_CMG_FVP.Inp" the systems file is “FlexSc_CMG_FVP.Qdr". The modal data files are
the same as previously in the RCS analysis “FlexSc_FEM.Mod" and “FlexSc_FEM.Nod". The
input data file contains data for two spacecraft with 4 SGCMGs, a rigid model and a flex model.
A set of modal data consisting of 40 selected flex modes is included at the bottom of the input
data file. Some unused states and outputs are eliminated using the Flixan truncation utility. The
Matlab analysis is performed in the sub-directory "Matan".

Creating the Systems in Batch Mode

On the top of the input data file there is a batch data-set “Batch for Spacecraft with 4 SG CMG”.
It is a short script of commands that speeds up the generation of the spacecraft systems. To run
the batch, first start the Flixan program, go to folder “…Flex Agile Spacecraft with SGCMG &
RCS\CMG Control\(e) 4SGCMG using FVP”. Go to “Edit”, “Manage Input Files”, and then
“Process/ Edit Input Data”.

When the following dialog appears, click "Continue".

192

Robustness is the ability of the system to tolerate uncertainties and variations, either
internal or external. Our next step is to analyze the spacecraft control system’s robustness
to internal parameter variations. The question is, how much parameter variations can a
system tolerate before it becomes unstable, or stops performing properly? Parameter
uncertainties are imprecise knowledge of the plant model parameters, such as in this case,
the mass properties, moments of inertia, CMG momentum, momentum direction, gimbal
angle and direction, etc. The structured uncertainties in a model are specified in terms of
variations in the actual plant parameters above and below their nominal values. We will
use the IFL method to "pull" the uncertainties out of the plant M(s). The uncertainties are
represented by a diagonal block ∆ that is connected to the plant by means of some
additional inputs and outputs, as shown in Figure (1). An input/ output pair for each
parameter variation (δi).

Figure 1 Closed-Loop Plant M(s) with the uncertainties block "pulled out"

The IFL methodology is implemented in Flixan. The program reads the nominal plant
parameters for the spacecraft and the CMGs from an input file. It also reads the
uncertainties for some of the parameters from the same file. For every non-zero
parameter variation the program creates an additional input/ output pair that is supposed
to hook up to a (δi) element in the block. The magnitude of each element represents the
maximum possible variation of the parameter above or below its nominal value. In
essence we create (n) additional inputs and outputs to the plant that connect to the
uncertainties block ∆, which is a block diagonal matrix ∆= diag(δ1,δ2,δ3,...δn). For
convenience the diagonal block ∆ is normalized so that its individual elements now vary
between +1 and -1. We also normalize the plant M(s) by scaling its input/ output
elements as needed to connect with the normalized ∆ whose elements are now bounded to
±1. The individual elements of ∆ may be scalars or matrices and each represents a real

193

uncertainty in the plant. Some parameter variations which are higher than rank-1
dependency may generate two or three (δi). An Ixz cross-product of inertia, for example,
will couple in both, roll and yaw axis, creating two separate δi's, one in roll and another in
yaw axis. In this case we treat them as two separate uncertainties. M(s) represents the
known dynamics consisting of the plant model with the control system in closed-loop
form. The augmented state-space system is used to perform robustness analysis using µ.
The system in this configuration is defined to be robust if it remains stable despite all
possible variations in the ∆ block as long as the magnitude of each individual variation is
bounded below ±δ(i), or ±1 in the normalized system. The structured singular value (µ) is
the perfect tool for analyzing this type of robustness problems in the frequency domain.
The value of 1/µ(M) represents the magnitude of the smallest perturbation that will
destabilize the normalized system M(s).

Figure1a Robustness Analysis Model

The block diagram formulation, shown in Figure (1a), is used for µ-synthesis or
robustness/ performance analysis using (µ) methods. The plant has inputs and outputs
that connect to the uncertainty block. It also has inputs and outputs that connect to the
control system K(s). It also has external disturbances (w) and output performance criteria
(z) which are also normalized to unity. We say that the plant meets sensitivity
requirements when the mu frequency response between (w) and (z) is less than one at all
frequencies. Similarly, and according to the small gain theorem, the closed-loop system is
robust to the specified uncertainties as long as µ(M) across the normalized block ∆, (that
is, between wp and zp) is less than one at all frequencies. Robust performance is when it

199

The batch performs the following operations. It creates a nominal spacecraft model with 40 flex
modes, title: "Flexible Agile Spacecraft with 4 SG-CMG" in file “FlexSc_4CMG.Qdr”. It also
creates the perturbation model with the 61 uncertainties, title: "Flexible Agile Spacecraft with 4
SG-CMG (Uncertainties)". The two state-space models are then converted to Matlab system
functions, "sc_4cmg_flex.m" and "sc_4cmg_flex_unc.m", respectively that can be loaded into
Matlab. Both systems contain roll, pitch, and yaw coupled vehicle dynamics. The second system,
in addition to the standard inputs and outputs of the first system, it includes also the 61 pairs of
inputs and outputs that connect to the uncertainties ∆ block. This is the diagonal block that
contains the normalized uncertainties which vary between -1 and +1. Some of the uncertainties
couple only in one axis, but some uncertainties couple in more than one axis.

Simulation Model

Now, let us take a look at a linear simulation model that uses the nominal spacecraft dynamics
without parameter variations. This simulation model is in file "Lin_Flex_Sim.mdl", shown in
Figure (2). The model is initialized using file "start.m", which also loads the two spacecraft
systems into Matlab workspace.

[1 1 1]

attit cmd
(deg)

wb

we

delta

deldot

Steering Logic

Tc

rate

atti

delta

deldot

Spacecraft
Dynamics

wb

ater

wer

PI Control

deldc

deldot

Tc

CMG Gimbal
Controls

Figure 2 Simulink model for the Flex Agile Spacecraft with 4 SG-CMGs, in file "Lin_Flex_Sim.mdl"

The spacecraft dynamics (green) block consists of the nominal state-space system "sc_4cmg-
flex.m" (no uncertainties). The input is a vector of four CMG gimbal torques which control the
gimbal rates. The outputs are: spacecraft attitude, rates, CMG gimbal angles, and gimbal rates.
The gimbal rate commands come from the CMG steering logic, and the gimbal rate control
system provides the gimbal torques required to control the rates. The purpose of the steering
logic is to control the spacecraft rate by creating gimbal rate commands at the 4 CMG gimbals.
The inputs to the steering logic are: spacecraft rates, gimbal angles, and spacecraft rate error. The
attitude control system is a simple PI. The (D) part of the PID is included in the steering. In the
simulation the spacecraft is commanded to perform a one degree rotation in all 3 directions. The
purpose of the simulation is to demonstrate nominal system stability.

206

Figure 7 Spacecraft System from "sc_4cmg_flex_unc.m" that includes the uncertainty inputs and outputs.

207

Figure 8 The Structured Singular Value frequency response across the perturbations block ∆ is less than one
at all frequencies, therefore, system is robust to parameter variations.

208

In the previous section we analyzed spacecraft configurations using four SGCMG that perform
3-axis attitude control of the spacecraft for quick maneuvering between targets. The control law
is efficient, symmetrical and fast because it uses the max control torque and momentum
capability of the CMG devices as it performs eigenaxis maneuvers, assuming that the pointing
requirement is the same in all directions. But what if the maneuvering requirements on the
spacecraft are not the same in all directions? For example, if we want to point an antenna or a
beam of light (which is along the spacecraft x axis) in a certain direction we are more interested
in the pitch and yaw efficiency of response and much less in roll, since roll errors do not affect
antenna operation. In addition, the spacecraft which is normally pointing nadir (towards the earth
center) is required to maneuver not more than 40 degrees from nadir. Furthermore, the spacecraft
moment of inertia in roll is much less than in pitch and yaw axes, so the torque and momentum
requirement in roll would be significantly less than pitch and yaw. It is conceivable, therefore,
and since the SGCMG are very costly devices that we may be able to get by with fewer
momentum control devices.

Figure 3.6.1 The Momentum Control System in this configuration consists of one Reaction Wheel combined
with two Single-Gimbal CMGs

209

The Momentum Control System (MCS) described in this configuration consists of two single-
gimbal CMGs for pitch and yaw and only one reaction wheel for roll control, see Figure (3.6.1).
The RW momentum (spin) direction is parallel to the spacecraft roll axis and controls roll
attitude. The two SG-CMGs are spinning at constant rate and their initial (nominal) momentum
directions are along the +x and –x axis respectively, cancelling each other's momentum. Between
operations there are occasional momentum dumps using the RCS jets to prevent the MCS
momentum from reaching saturation. The momentum desaturation system is attempting to keep
the CMG gimbals in the nominal position and the RW speed at zero. Each CMG gimbals only in
one direction relative to the spacecraft and their momentum directions vary as they gimbal. CMG
#1 is gimbaling in pitch, and initially (when the gimbal is at zero and the momentum is along x)
it generates a yaw torque. The second CMG is gimbaling in yaw and it generates a pitch torque
when the gimbal is in its nominal zero position. When the CMGs are gimbaling at bigger angles,
rolling torques are also generated which are counteracted by the reaction wheel control system.
The torque output direction of each CMG varies. It is orthogonal to the momentum vector and
the gimbal direction, and since the momentum direction is constantly changing the steering
algorithm must keep track of the gimbal angles (δi) and calculate the gimbal rate commands for
the two SG-CMGs. It calculates also the roll torque command for the RW.

The Line-of-Sight (LOS) direction of the antenna is along the spacecraft x-axis, and the main
priority of the ACS is to point the LOS at the target as fast as possible, which requires pitch and
yaw maneuvering. Positioning the spacecraft in roll is a secondary priority and it is acceptable if
it takes longer to converge in roll in comparison to pitch and yaw. Attitude maneuvering in pitch
and yaw should, therefore, be performed faster using the CMG’s, while the roll axis is controlled
by the reaction wheel system which is slower. The CMG torque capability in pitch and yaw and
the control system bandwidth is much greater than the RW torque and bandwidth controlling the
roll axis and the MCS, therefore, cannot perform ideal eigenaxis maneuvers as it was
demonstrated by the 4 SG-CMG control system in previous sections. For comparison purposes,
the LOS pointing error will be shown separately from the roll error.

210

Spacecraft Dynamics

The spacecraft rotational accelerationω is a function of the internal reaction wheel torque (TRW),
the CMG internal torque (TCMG), and also the external torques (Text)

[] () extscRW
T

CMGsc TJTTJ +×−+= ωωω 001

Where: TCMG is the CMG torque and TRW is the reaction wheel torque in spacecraft body. The
CMG torque is a function of the gimbal rates and angles as defined in equations (2.2 and 2.4). It
consists of torques transmitted through the gimbals and gyroscopic torques transmitted through
the bearings. The RW motor speed control dynamics is ignored and we assume that the RW
torque is equal to the commanded torque from RW steering, but it is limited to less than ±10 (ft-
lb).

The reaction wheel rate of change of momentum is a function of the reaction wheel torque which
is in the x direction. IW is the wheel moment of inertia about the spin axis.

[] RW
T

RWRW THH 001=×+ω

The reaction wheel spin rate in (rad/sec) is

w

RW
RW I

H
w

)1(
=

The CMG rate of change of momentum is a function of the internal CMG torque (TCMG). The
control torque experienced by the spacecraft in body axes due to gimbaling (δ) is (cmgH−),
which is the rate of change in the CMG momentum.

()[]δδ

ω




ATH
THH

conCMG

CMGCMGCMG

−==−

−=×+

The (2x3) matrix [A] consists of two column vectors (ai) which are functions of the gimbal
angles (δi). They are also functions of the CMG quad and reference directions (qi and ri).

() ())(21 sincos:)(iCMGiiiii hrqawhereaaA δδδ −==

The two CMG gimbal directions are in pitch and yaw:
















=

10
01
00

m

211

The two CMG momentum reference directions (initially facing in opposite x directions at zero
gimbal angles) are:















 −
=

00
00
11

r

The quad directions from the cross-product (mi x ri) are:

















−
−=
01
10

00
q

The CMG gimbal rates are controlled by a servo system that generates gimbal torques. The servo
torques are attempting to counteract the gyroscopic disturbance torques created by the spacecraft
rate. φθ  and are the spacecraft rates resolved about the CMG reference and quad axes, as
defined in equations (2.3). The CMG gimbal inertial acceleration is obtained by integrating the
gimbal moment equation below, ignoring friction. Tgi is the motor torque applied at the gimbal.
Even though the CMG moment of inertia about the gimbal Jg is relatively small, the gyroscopic
moment caused by the CMG momentum hcmg coupling with spacecraft rate is a big torque,
requiring a powerful gimbal servo-motor in order to control the gimbal rate.

() giicmgig ThJ =−+ δφδθδ cossin)(


We also check the simulation by calculating the system momentum which is always constant. In
this case it's zero because it is initialized at zero.

.constHHJH RWCMGscsys =++= ω

This dynamic model is implemented in Matlab function "SC_RW_2CMG_Dyn2.m". There is also
a simple dynamic model implemented in Matlab function "SC_RW_2CMG-Dyn1.m" that has
simplified gimbal dynamics. The gimbal torques are not calculated in this model, but the gimbal
rates are assumed to follow the commanded rates. The servo system is replaced by a 12 Hz
second order CMG gimbal rate control model. These dynamic models are used in separate
simulations. The attitude quaternion is updated using body rate with flexibility included (wt= w +
wf). Flex rate at the gyro (wf) is provided by the flex state-state model that gets excited by the
MCS torque.

212

function xdot= SC_RW_2CMG_Dyn2(x,Tci,Tw,Td,wf)
global nc d2r r2d
global J Jinv Iw Jsi Jgi Joi hcmg
%--
% State Variables (x)
% x(1-3) = Body rates (w) (rad/sec)
% x(4-7) = Quaternion
% x(8:10) = h (CMG momentum)
% x(11:13) = RW Momentum
% x(14:15) = deldot
% x(16:17) = delta
% Inputs:
% Tci(2) = Gimbal Torques (ft-lb)
% Tw(1) = Reaction Wheel Torque in spacrft x-axis, (ft-lb)
% Td(3) = Disturbance Torque (ft-lb)
% wf(3) = Flex rate only from FEM system
%--
xdot= zeros(30,1);
w= x(1:3); % S/C Body rates (rad/sec)
qt= x(4:7); % S/C Quaternion Attitude
h = x(8:10); % CMG Momentum
hrw= x(11:13); % React Wheel Momentum (body)
deldot= x(14:15); delidot=deldot; % Gimbal Rates relatv to s/c
delta = x(16:17); % Gimbal Angles (rad)

wt= w+wf; % Total body rate + flex
wr = hrw(1)/Iw; % React Wheel Rate (rad/sec)
Twi= [Tw, 0, 0]'; % Wheel Torque Vector (ft-lb)
hs = J*w + h + hrw; % System Momentum (hs)
[Pj,thd,phd,ddd]= Transforms(delta*r2d,w); % SC Rates al ref, quad, gmb

Tcmg=zeros(3,1); % Calc CMG Torque in Body
for i=1:nc
 sd=sin(delta(i)); cd=cos(delta(i));
 Mj= [Tci(i); ... % CMG Torque in CMG axis
 deldot(i)*((Jsi-Jgi)*(thd(i)*cd+phd(i)*sd) +hcmg(i)); ...
 deldot(i)* (Jgi-Joi)*(phd(i)*cd-thd(i)*sd)];
 Tcmg= Tcmg - Pj(:,:,i)*Mj; % Torque on Vehicle
 delidot(i)= delidot(i) + ddd(i); % Delta_Inertial_dot (rad)
end

xdot(1:3)= Jinv*(Tcmg +Twi - cross(w,J*w)); % Vehicle acceleration
xdot(4:7)= 0.5*[0 wt(3) -wt(2) wt(1); % Quaternion Update
 -wt(3) 0 wt(1) wt(2); % includes flex)
 wt(2) -wt(1) 0 wt(3);
 -wt(1) -wt(2) -wt(3) 0]* qt;
xdot(8:10)= -Tcmg - cross(w,h); % Hcmg_dot
xdot(11:13)= -Twi - cross(w,hrw); % R-Wheel Momentum dot
for i=1:nc
 sd=sin(delta(i)); cd=cos(delta(i));
 xdot(13+i)= (Tci(i)-hcmg(i)* ... % Gimbal acceler delta-ddot
 (thd(i)*sd-phd(i)*cd))/Jgi;
 xdot(15+i)= x(13+i); % Gimbal rates delta-dot
end

% Additional Outputs
xdot(18:20)= hs; % System Momentum
xdot(21:23)= wt; % Total Vehi rate
xdot(24:26)= h + hrw; % CMG + RW Momentum
xdot(27:29)= Tcmg + Twi; % CMG + RW Torques on s/c
xdot(30) = wr; % Wheel Rate (rad/sec)

	Flex Agile Spacecraft (RCS Control)
	Flex Agile Spacecraft (CMG Control)

