
 
The Linear Quadratic Regulator (LQR) and the Linear Quadratic Gaussian (LQG) control design are 
easy to use methods for designing controls to stabilize and regulate systems. The LQR is simply state-
feedback. The LQG is used when the plant states are not directly available for measurement. It 
consists of two steps: the design of an LQR state-feedback controller, and the design of a Kalman-
Filter observer in order to estimate the state vector. The state-feedback and the estimator are 
combined together to create an output feedback dynamic controller in state-space form. 
 
1. Linear Quadratic Regulator 
 
The Linear Quadratic Regulator (LQR) is used to design state-feedback control gains that stabilize a 
plant model, achieve good closed-loop performance of the states in response to transients and 
robustness to parameter uncertainties. It requires a plant model in state-space form. The plant inputs 
are the controls and the outputs are either measurements or criteria to be optimized. The plant must 
be stabilizable from the controls and detectable from the outputs. The control solution is a feedback 
from the plant states derived by the optimization of a linear quadratic performance index using the 
Riccati equation. The optimization takes into consideration two important and most frequently 
conflicting requirements: the speed of convergence of the state-vector from some initial value and 
the amount of the control input along a trajectory. We will present the analytic solutions for both the 
continuous and discrete LQR problems.  
 
1.1 The Continuous Asymptotic LQR Problem 
 
Equation 1.1.1 represents the plant dynamics in state-space form 
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Where:   
x(t)  is the state of dimension n 
u(t)  is the control of dimension m 
y(t)  is the output  of dimension r 
 
The LQR method calculates a state-feedback optimal control uo(t) that minimizes the quadratic 
performance index J in equation 1.1.3. 
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Where: the matrices Q and R, are defined to be the output and control weight matrices. They are 
used as knobs which adjust the closed-loop system’s response to initial states x0 or to disturbances. 
They trade performance in the output vector y(t) in terms of speed of convergence versus the 
magnitudes of control u(t). The (r x r) matrix Q should be symmetric, positive semidefinite, and the 
matrix R (m x m) should be symmetric positive definite.  

Selecting a small R or a large Q in the LQR design, it is telling the mathematics that when the control 
loop is closed and the system is initialized at some initial state x(0), I would like the output response 
y(t) to convergence fast to the commanded value with small transients, regardless of how much 
control force u(t) is necessary to achieve this. This results in a high bandwidth control system and 
possibly effector saturation.  

If on the other hand a large R or small Q are used in equation 1.1.3, the magnitudes of the control u(t) 
are penalized more than the output transients y(t) in the performance index. It indicates that my 
actuators do not have as much strength to handle disturbances or big commands. The closed-loop 
system’s response to disturbances will be slower, resulting in a reduced control system bandwidth 
that will protect the actuators from saturating. 

The solution to the above problem exists if the (A, B) system is stabilizable, and the (A, D) pair is 
detectable where D is defined by equation 1.1.4. it means that all unstable plant modes must be 
controllable and measurable. 

D D C QCT T=         (1.1.4) 

Notice, that the variable y(t) used in the optimization criterion is not necessarily the plant output. Any 
combination of output variables, not necessarily measurable, represented by a matrix C1, different 
than C, can be used in the optimization criterion, as long as the plant states are detectable from C1. C1 
may also be the identity matrix, in which case the state variables are directly and individually 
penalized in the performance index via matrix Q. 

The state-feedback gain Kc of equation 1.1.2 is calculated from equation 1.1.5, and the (n x n) matrix 
P is obtained from the steady-state solution of the Riccati Equation 1.1.6 
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Furthermore if the problem is initialized with an initial state error x(0)=x0, then the performance 
index criterion is: J = x(0)T P x(0) 

  



1.2 The Discrete Asymptotic Case 
 
In the discrete case the plant system is represented by the difference matrix equations 1.2.1. 
x k A x k B u k
y k C x k
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Where:   
x(k)  is the state of dimension n 
u(k)  is the control of dimension m 
y(k)  is the output of dimension r 
k represents the present state variable and (k+1) is the next iteration 
 
The Discrete LQR method calculates a state-feedback optimal control uo(k) that minimizes the 
quadratic performance index J in equation 1.2.2. 
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Where: the matrices Q and R, are defined as in the continuous case. The (m x n) state feedback gain 
matrix Kc is obtained from equation 1.2.4, where: the (n x n) matrix P is obtained from the solution of 
the discrete steady-state Riccati Equation 1.2.5 
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Where: k= 0, 1, 2, 3, …, N-1 

The solution to the above problem exists if the (A, B) system is stabilizable, and the (A, D) pair is 
detectable, where D is defined by equation 1.2.6. This means that all unstable plant modes must be 
controllable and measurable. 

D D C QCT T=          (1.2.6) 
 
Furthermore if the problem is initialized with an initial state error x(0)=x0, then the performance 
index criterion is: J = x(0)T P(0) x(0) 

  



2. The Finite-Time LQR with Terminal State Penalty 
 
The finite-time or transient deterministic optimal linear quadratic regulator problem is essentially 
similar to the steady-state case described in section 1. The difference is that an additional term is 
included in the performance index that penalizes the value of the state-vector x(tf) at the terminal 
time tf. The resulting state-feedback control law Kc(t) is time-varying. 
 
2.1 The Continuous Transient LQR Problem 
 
The plant dynamics in state-space form is the same as before and the system is initialized at x(0)=x0 
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Where:   
x(t)  is the state of dimension n 
u(t)  is the control of dimension m 
y(t)  is the output  of dimension r 
w(t) is white noise with intensity V(t) 
 
The Transient LQR solution calculates a state-feedback optimal control uo(t) that minimizes the 
quadratic performance index J in equation 2.1.3. 
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Where: (tf) is a known terminal time. The matrices Q and R are the output and control weight 
matrices as already described in Section 1. P1 is a weight matrix that penalizes the terminal state. 
These matrices determine the optimal trade-off between: the output y(t) deviations from zero along 
the trajectory, the magnitude of control input u(t), and the dispersion of the terminal state vector 
x(tf) from zero at the end-time.  
 
Matrix Q is (r x r) and should be symmetric positive semidefinite,  
Matrix R is (m x m) and should be symmetric positive definite,   
Matrix P1 is (n x n) and should be symmetric positive semidefinite 
 
  



The (m x n) state feedback gain matrix Kc(t) is obtained from equation 2.1.4, where: the (n x n) matrix 
P(t) is obtained from the solution of the transient Riccati Equation 2.1.5 
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The equation 2.1.5 is solved backwards in time after being initialized at the terminal time tf where: 
P(tf) = P1 
 
Furthermore the performance index criterion J is 
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Solution of the Continuous Transient LQR  
 
The following algorithm, from reference [1], is used to solve the transient regulator problem. Let us 
define a matrix Z where: 
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Matrix Z has the property that if α is an eigenvalue of Z, -α is also an eigenvalue of Z. We can find the 
eigenvector matrix W such that 
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Where: Λ is a diagonal matrix consisting of the positive eigenvalues of Z, and - Λ consisting of the 
negative eigenvalues of Z. Then we partition the (2n x 2n) matrix W into four (n x n) blocks as shown 
in equation 2.1.9  
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The solution P(t) of the Riccati equation 2.1.5 is obtained from equation 2.1.10, where 
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From equation (2.1.11) as (tf) approaches infinity, G(tf-t) approaches zero, and the steady-state 
solution of the Riccati equation becomes: P W W= −

22 12
1    



2.2 The Discrete Time Transient LQR  
 
In the Discrete Transient LQR design case the plant system is represented by the difference matrix 
equations 2.2.1 
 
x k A x k B u k w k
y k C x k
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Where: 
   
x(k)  is the state of dimension n 
u(k)  is the control of dimension m 
y(k)  is the output of dimension r 
w(k) is zero mean white noise with variance V(t) 
 
We must calculate a state-feedback optimal control uo(k) that minimizes the quadratic performance 
index J in equation 2.2.3. 
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The matrices Q and R and PN are defined as in the continuous case. The discrete optimal regulator 
solution is obtained from the difference equation 2.2.4 solved backwards in time, initialized at N with 
P(N)=PN. The (n x n) matrix P(k) is obtained from the solution of the discrete transient Riccati 
Equation 2.2.5, where: k=0, 1, 2,…, N-1 
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Furthermore if the problem is initialized with an initial state error x(0)= x0, then the performance 
index criterion is 
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3. The Asymptotic Kalman-Bucy State-Estimator, Observer 
 
In the previous two sections we demonstrated how to design optimal state-feedback controllers, 
assuming that the state vector can be measured accurately and be available for feedback. This 
assumption is most often unrealistic because in most systems the state vector is not directly 
measurable but the output measurements consist of a linear combination of the states. We therefore 
need to design an observer, which is a system that will approximately reconstruct the state vector 
from the plant output, and this will allow us to apply our optimal state-feedback control laws. In this 
section we will present the design of the steady-state Kalman-Bucy filter that is used to reconstruct 
an approximation of the state vector from the measured system output that will converge to the 
state vector. We shall also assume that the system is corrupted by two types of noises: measurement, 
and state excitation noise. They are both white, zero mean and are not correlated. We will first 
analyze the continuous and then the discrete Kalman-Filter observer for continuous and discrete 
systems. 
 
3.1 The Continuous Kalman-Bucy Filter 
 
Let us consider the following plant in state-space form. This system is affected by disturbances w(t) 
and the observations y(t) are corrupted by noise v(t) 
 
( ) ( ) ( ) ( )
( ) ( ) ( )
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Where: 
 
x(t) is the state vector of dimension n. 
u(t) is the control input vector of dimension m. 
w(t) is the process noise of dimension l (l≤n) and covariance matrix Qpn, where Qpn=Q'pn≥0. 
y(t) is the measurement vector of dimension r (r≤n). 
v(t) is the measurement noise with intensity Rmn=R'mn≥0. 
 
The purpose of the optimal Kalman Filter estimator is to construct an estimate of the state x 
operating over the time range [t0->t] such that the index J in equation 3.1.2 is minimized, where: 𝑥𝑥�(𝑡𝑡) 
denotes the estimate of x(t). E is the expected value, and the matrix W is (n x n) positive semi-
definite. 
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The solution exists when the pair (AT,CT) is stabilizable and the pair (A,D) is detectable 
Where: D D'= G Qpn GT 
 
  



After initializing with the expected value of the initial state: [ ]( ) ( )x E x0 0= , the state estimate is 
computed by the following differential equation 3.1.4. This equation can also be written as in 3.1.5 to 
show that the inputs to the estimator are the plant control vector u(t) and the measurements y(t), as 
shown in figure (3.1)  
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The steady-state Kalman-Filter gain Kf is obtained from equation 3.1.6, where matrix P is symmetric 
positive semi-definite and is obtained from the steady-state solution of the Asymptotic Riccati 
Equation 3.1.7 
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The mean square reconstruction error is shown in equation 3.1.8 

( ) ( )[ ] [ ]J t E x t x t W x t x t trace PWT= → ∞ − − =lim( ) ( ) ( ) ( ) ( )    (3.1.8) 

 

 
Figure 3.1 Functional Block Diagram of the Kalman-Filter Steady-State Observer  

The optimal observer described provides a compromise between the speed of state reconstruction 
and the immunity to measurement noise. The balance between these two properties is determined 
by the magnitudes of the white noise intensity matrices Qpn and Rmn that can be adjusted to satisfy 
design requirements. Decreasing Rmn and increasing Qpn improves the speed of state reconstruction 
and shifts the observer poles further to the left side of the complex plane but the observer becomes 
more vulnerable to observation noise.  



3.2 The Discrete-Time Kalman-Bucy Filter 
 
The steady-state Kalman-Filter estimator for the discrete plant is obtained in a similar fashion. The 
dynamic model for the discrete plant is defined by the difference equations 3.2.1, where the vectors 
x, w, v, and y are defined as in the continuous equation 3.1.1. 
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The discrete optimal Kalman Filter estimator problem is to construct an estimate of the state 𝑥𝑥�(𝑘𝑘) 
from previous measurements of the output vector [y(0), y(1)...y(k-1)] such that the quantity J in 
equation 3.2.2 is minimized, where E denotes the expected value, and W is (n x n) positive semi-
definite matrix. 

( ) ( )[ ]J k E x k x k W x k x kT= → ∞ − −lim( ) ( ) ( ) ( ) ( )0     (3.2.2) 

The solution exists when the pair (AT, CT) is stabilizable and the pair (A, D) is detectable 
Where: D D'= G Qpn GT 
 
After initializing with the expected value of the initial state: [ ]( ) ( )x E x0 0= , the state estimate is 
computed by the following difference equation 3.2.4. This equation can also be written as in 3.2.5 to 
show that the inputs to the estimator are the plant control vector u(k) and the measurements y(k). 
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The Kalman-Filter gain Kf is calculated from equation (3.2.6), where matrix P represents the steady-
state variance of the state-vector reconstruction error. It is symmetric positive semi-definite and is 
obtained by solving asymptotically the recursive Riccati Equation 3.2.7. 
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The initial state of the estimator must be set equal to the plant state: 𝑥𝑥�(0) = 𝑥𝑥0. The following result 
is also true 

( ) ( )[ ]J k E x k x k W x k x k trace PWT= → ∞ − − =lim( ) ( ) ( ) ( ) ( ) [ ]0   



4. Linear Quadratic Gaussian Output Feedback Control 
 
The Linear Quadratic state-feedback controller and the Kalman-Filter results obtained from Sections 1 
and 3 are now combined together to create an output feedback dynamic controller. Let us again 
consider the state-space plant model that we want to control. 
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y t C x t
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Where:   
x(t)  is the plant state of dimension n 
u(t)  is the plant control input of dimension m 
y(t)  is the plant output of dimension r 
 
The optimal steady-state, state-feedback control u t K x to

c( ) ( )= − was derived in Section 1, and the 
Kalman-Filter observer was described in Section 3. 
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Since the state vector x(t) is not directly available for measurement, we will use the estimated state 
vector and apply the control feedback trough the estimated state rather than the actual state

u t K x to
c( ) ( )= −          (4.1.5) 

 
The block diagram in Figure 4.1a shows the state-estimator and the state-feedback controller 
operating in closed loop form around the plant. Figure 4.1.b is the same system but the observer and 
the state-feedback gain are combined together as a single dynamic control system that provides 
feedback from the plant output instead of the states. The closed loop dynamic model is obtained by 
combining the plant and Kalman-Filter equations in a (2n x 2n) system 4.1.6. 
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After considering the state reconstruction error e t x t x t( ) ( ) ( )= − we obtain equation 4.1.7 
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The eigenvalues of the system in equation 4.1.7 consist of the eigenvalues of det(sI-A+BKc) plus the 
eigenvalues of det(sI-A+KfC). Consequently the closed loop system comprises the eigenvalues of the 
optimal controller under state feedback, plus the eigenvalues of the observer. This is an important 
principle called the “separation principle", because, if we design a stable state-feedback controller 
and an asymptotically stable observer independently, the resulting interconnection system, 
equations (4.1.6) or (4.1.7), is an asymptotically stable system. 



 

 
Figure 4.1a Structure of the Output Feedback Dynamic Controller Consisting of the Kalman-Filter Estimator 
and the State-Feedback Gain Kc 

 
Figure 4.1b Closed-Loop System with Dynamic Controller in State-Space Form Providing Feedback from the 
Plant Output 

  



5. Linear Quadratic Control Program 
 
The Flixan Linear Quadratic Control program implements the four LQG functions described in Sections 
1 through 4. The user must provide the plant model G(s) and the weight matrices described which 
must be included in a systems file (.Qdr). The matrices can also be entered interactively. The program 
calculates the control matrix Kc, the estimator gain Kf or the LQG dynamic control system K(s) and 
saves them in the same systems file. It runs either interactively or in batch mode. When in batch 
mode it processes input datasets from an already created input file (.Inp). The dataset of an operation 
is automatically created and saved in the input file after running it interactively the first time. It can 
be reprocessed multiple times in batch mode which is much faster than interactively. Typically the 
user runs initially the Flixan programs interactively to create the datasets and then when he needs to 
make a modification in the data he may reprocess the datasets in batch mode, either each set 
individually or the entire file using a batch set. The program consists of the following options: 
 

1. The Asymptotic LQR design for a continuous or discrete time plant described in Section 1. The 
program reads the continuous G(s) or discrete G(z) plant state-space model from the systems 
file, the output weighting matrix Qc, and the control weighting matrix Rc. It solves either the 
continuous or the discrete LQR problem depending on the plant sampling period, which is 
zero when the plant is continuous. It calculates the steady-state LQR state-feedback gain Kc 
and saves it in the systems file (.Qdr). The user may choose between two algorithms for 
solving the asymptotic Riccati equation. 

2. The Transient LQR design for a continuous or discrete time plant described in Section 2. The 
program reads the continuous G(s) or discrete G(z) plant state-space model from the systems 
file, the (r x r) output weighting matrix Qc, the (m x m) control weighting matrix Rc, and the 
(nxn) weighting matrix P1 that penalizes the state vector at the terminal time tf. It requires 
also the initial time-to-go before the final time, and the number of points to calculate the 
state-feedback gains (only when the plant is continuous). It calculates the time-varying gain 
matrix Kc(t) and saves it as a function of time-to-go in Excel format in file “Gains.Txt”. Tgo is in 
the first column and the gain matrix is printed in rows. 

3. The Kalman-Filter State Estimator for a continuous or discrete time plant described in Section 
3. The program reads the continuous G(s) or discrete G(z) plant state-space model from the 
systems file, the (nxl) input noise matrix G, the (rxr) process noise intensity matrix Qpn, and the 
(mxm) measurement noise covariance matrix Rmn. It solves either the continuous or the 
discrete KF observer problem, calculates the (nxr) Kalman-Filter gain Kf and saves it in the 
systems file (.Qdr). 

4. The Dynamic Output Feedback Controller that is described in Section 4. The program 
combines the results obtained in steps 1 and 3, which are: the state-feedback gain Kc and the 
Kalman-Filter gain Kf, to synthesize a steady-state control system in the situation when the 
state-vector is not available for measurement. It reads the two matrices from the systems file 
(.Qdr), calculates the output-feedback controller K(s) in state-space form and saves it in the 
same systems file. 

 
  



The in-between program calculations, such as matrix P, errors in the Riccati solution, closed-loop 
system eigenvalues, etc. are saved in file “LQC.Out” after execution. The analyst may check this file to 
make sure that no errors have occurred, eigenvalues are stable, matrix P is symmetric, etc. It is also 
important to check the plant’s controllability and observability because the success of the solutions 
depends on that. It is the first option in the menu of the Linear Quadratic Control design program and 
it is only available in the interactive version when you begin analyzing the system, since it is not 
necessary to rerun it interactively when you reprocess the dataset in batch mode. 
 
5.1 Running the Program Interactively 
 
The Linear Quadratic Control design program is selected from the Flixan main menu by going to 
“Program Functions”, “Robust Control Synthesis Tools”, and then “Linear Quadratic Control Design”, 
as shown below. Select the input filename to save the operation dataset and the systems filename 
where it will read and write the systems and matrices, and click on “Process Files”. 
 

 
 

 
 
The main LQR control design menu includes several options. Select one of the options, such as: 
Steady-State LQR design in this case, and click on “Select”.  



 
 
In this example the input file already contains 2 LQR design datasets. You can either process one of 
the 2 existing datasets or you can create a new dataset by clicking on “Make a New Set Interactively”. 
Choose the second option and from the next menu select the title of the plant model that will be 
stabilized by LQR, “Simple End-Game Model” in this example. 
 

 

 
 
  



The new LQR design dataset like all datasets requires a title. Enter its title in the following dialog and 
click “OK”. It can be used to reprocess this operation in the future when you run the program in batch 
mode.  

 
 
The next step is to select the output criteria to be optimized. You can either use the output matrix C, 
the identity matrix, or define a new set of output criteria by picking a different matrix C1, as shown. 

 
 
The following menu is used to select the output criteria matrix C1 from the systems file. If the matrix 
is not in file you may create it interactively by adding a new matrix. The program checks the system’s 
observability from matrix C1, which is okay in this case.  

 
 



You must also select the two weight matrices Qc and Rc from the systems file. The (3x3) matrix Qc 
penalizes the 3 criteria outputs which are specified by the output matrix C1, and the (2x2) matrix Rc 
penalizes the control inputs which are 2 in this example. 
 

 

 
 
We must finally select the algorithm to solve the asymptotic Riccati equation. The program provides 2 
options. Laub’s algorithm is chosen in this case. We must also enter a title for the state-feedback gain 
Kc that will be saved in the systems file. All systems and matrices need a title in a (.Qdr) file. 

 

  



The following LQR design dataset was created in the input file (.Inp) that can repeat this operation in 
the future. The dataset includes a label on the top: “LINEAR QUADRATIC REGULATOR …” that 
specifies which Flixan program will process the dataset, and a title “LQR Control Design 5 for Simple 
...”. The green comments were added later. It can be used to reprocess the data in batch mode. 

 

The (2x4) state-feedback gain matrix Kc was saved in the systems file (.Qdr) under the specified title. 
The comments are transferred from the input dataset to the matrix in the systems file. The 
definitions of the matrix inputs and outputs are determined from the plant model variables. 

 

  



5.1 Running the Program in Batch Mode 
 
To run a previously created dataset, such as an LQR design, for example, you must first select the 
project directory, and from the Flixan main menu, go to “File Management”, “Managing Input Files”, 
and then “Edit/ Process Input Data Files”, as shown below. 
 

 
 
The input file management utility dialog comes up and from the left menu select the input file that 
contains the datasets for this project by clicking on “Select Input File”. The menu on the right fills with 
the titles of the datasets which are included in the input file. Select one of the titles, an LQR Control 
Design in this example, and click on “Process Input Data”. The program will calculate the LQR gain 
matrix Kc and save it in the systems file, as before. You may then select another dataset, such as a 
Transient LQR or State Estimator, and process them also. If you include a batch set, such as the one 
shown here at the top, you may select it to instantly process the entire input file. 
 

 
  



6. Examples 
 
  



6.1 Overhead Crane Example 

In this example the plant system consists of two masses m1 and m2 connected with a rope. The mass 
m1 is suspended from m2 by the rope, as shown in Figure 6.1.1, representing a simple model of an 
overhead crane. The mass m2 can only move along they y direction as a result of the control force F 
which is applied on m2 along they y direction. Equations 6.1.1 describe the motion of the two masses  

m y m g

m y F m g x x
l

1 1 1

2 2 1
2 1

 sin

 sin sin

=

= − =
−

θ

θ θ     (6.1.1) 

Where: 
g  is the acceleration due to gravity 
θ  is the angle of the string from vertical 
L  is the length of the pendulum 

 

Figure 6.1.1 Simple Overhead Crane Plant Model 
  



The design requirement for this plant is to control the position y1 of the bottom mass m1 by applying 
a control force F on the top mass m2 and controlling its motion y2. From equations 6.1.1 we can write 
the plant equations in state space form, assuming that g/l =1 and m1=m2 
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      (6.1.2) 

Where: 
x(t)  is the state vector, x= [y1, y2, 𝑦𝑦1̇,𝑦𝑦2̇] 
u(t)  is the control force F 
w(t) is the process noise vector 
 
The output vector in equation 6.1.3 consists of two deterministic measurements: the position y1 of 
the mass m1 and the pendulum angle θ of the rope from vertical.  

z x v=
−









 +

1 0 0 0
1 1 0 0         (6.1.3) 

 
Where: v is a zero mean white measurement noise vector 
 

The Analysis 

In this example we shall apply the Linear Quadratic Regulator method to design a positioning control 
system for the bottom mass using the two output measurements (y1, θ) to calculate the control force 
on m2. The LQR will guarantee a stable solution, but since we want to control the position y1 of the 
bottom mass m1 we will introduce one additional state in the design model (y1-integral) and we will 
design a state-feedback controller for the augmented 5-state plant. However, we cannot directly 
apply state-feedback because most of the states are not measurable, only y1 and θ are. We will 
therefore design an estimator for the four state vector, x= [y1, y2, 𝑦𝑦1̇,𝑦𝑦2̇] and apply the state-feedback 
from the estimated states plus the y1-integral which is known and it does not have to be estimated. 
We will use Flixan to generate the dynamic models for design and analysis, and design the LQR state-
feedback and the Kalman-Filter observer. Then we will analyze the control system performance in 
Matlab using simulations and perform frequency response analysis. 

  



The Flixan Files 

The files for the Overhead Crane example are in subdirectory: “Flixan\LQG\Examples\Crane”. The 
input file is “Crane.Inp” and contains the Flixan datasets for generating the plant models, calculating 
the steady-state LQR gains, and the Kalman-Filter. The crane design model is “Overhead Crane Design 
Model”. It is augmented by including the y1-integral state which is intended to improve control of the 
y1 position. The augmented system title is “Crane Design Model with Y1 Integral” and it is used to 
design the LQR 5-state-feedback gain Kc1. The 3 outputs of matrix C (y1-integral, y1, and θ) are 
penalized in the LQR optimization via matrix Qc2. The control force is penalized via the scalar Rc to 
achieve a satisfactory trade-off between speed of convergence and force usage. The matrices and 
systems are in file “Crane.Qdr”. The batch set is used to process the entire file. 

BATCH MODE INSTRUCTIONS ...............                                                              
Batch to prepare models for the Overhead Crane Analysis and Design 
! This batch Generates Dynamic Models, LQR State-Feedback Control,  
! and Kalman-Filter Gain and Estimator for the Overhead Crane  
! 
! Retain the Old System and Matrices 
Retain System    : Overhead Crane Design Model   
Retain System    : Overhead Crane Analysis Model 
Retain Matrix    : Output Weight Matrix Qc2  
Retain Matrix    : Control Weight Matrix Rc 
Retain Matrix    : State Weight Matrix Qc4        
Retain Matrix    : Process Noise Covariance Matrix Qpn4   
Retain Matrix    : Measurement Noise Covariance Rmn2 
! 
!                  Control and Estimator Design 
Transf-Function  : Integrator 
System Connection: Crane Design Model with Y1 Integral  
LQR Control Des  : LQR Control Design 1 for Crane Design Model with Y1 Integral    
State Estimator  : Kalman-Filter Design 1 for Overhead Crane Design Model  
! 
!                  Convert the Design and Analysis Models and Gains for Matlab Analysis 
To Matlab Format : Crane Design Model with Y1 Integral  
To Matlab Format : Overhead Crane Analysis Model 
To Matlab Format : LQR State-Feedback Control 1 for Crane Design Model with Y1 Integral  
To Matlab Format : Kalman-Filter Estimator 1 for Overhead Crane Design Model  
------------------------------------------------------------------------------------------------- 
 
SYSTEM OF TRANSFER FUNCTIONS ... 
Integrator 
! Integrates the Mass-1 Displacem Y1 
!  
Continuous 
TF. Block #  1    (1/s)                                           Order of Numer, Denom=  0  1 
Numer 0.0         1.0      
Denom 1.0         0.0 
...................................................... 
Block #, from Input #, Gain 
 1       1       1.00000 
........................... 
Outpt #, from Block #, Gain 
 1       1       1.00000 
........................... 
Definitions of Inputs  =   1 
Mass-1 Displacem (y1) 
  
Definitions of Outputs =   1 
Integral od Mass-1 Displacem (y1-integr) 
------------------------------------------------------------------------------ 
  



INTERCONNECTION OF SYSTEMS ..... 
Crane Design Model with Y1 Integral 
! Creates an Augmented plant for control Design by including the integral  
! of mass-1 displacement in the states and output. 
! 
Titles of Systems to be Combined 
Title 1 Overhead Crane Design Model 
Title 2 Integrator    
SYSTEM INPUTS TO SUBSYSTEM  1                                                           Plant(s) 
System Input  1 to Subsystem  1, Input  1, Gain= 1.0                                    Control Force  
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  2                                                        Integrator 
System Output  1 from Subsystem  2, Output  1, Gain= 1.0                                y1 integral 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  1                                                        Plant Outputs 
System Output  2 from Subsystem  1, Output  1, Gain= 1.0                                y1 displ 
System Output  3 from Subsystem  1, Output  2, Gain= 1.0                                theta 
.............................................................................. 
 
SUBSYSTEM NO  1 GOES TO SUBSYSTEM NO  2                                                 Plant Outp to 
Control Input 
Subsystem  1, Output  1 to Subsystem  2, Input  1, Gain= 1.0                            y1 displacem 
.............................................................................. 
Definitions of Inputs  =   1 
Disturbance Force   (Fdist)     
 
Definitions of Outputs =   3 
Mass-1 Displacem-Integral (y1-int) 
Mass-1 Displacement       (y1) 
Pendulum Angle            (theta)    
------------------------------------------------------------------------------------------------- 
 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN                                                                                                                                                 
LQR Control Design 1 for Crane Design Model with Y1 Integral                                                                                                                                                     
! State-Feedback Control Design for the Augmented 5-state Crane Model  
! using the output matrix C in the optimization criteria 
! 
Plant Model Used to Design the Control System from:        Crane Design Model with Y1 Integral                                                                                                                  
Criteria Optimization Output is Matrix C                                                                                                                                                                 
State Penalty Weight (Qc) is Matrix:   Qc2                 Output Weight Matrix Qc2                                                                                                                      
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc                                                                                                                      
Continuous LQR Solution Using Laub Method                                                                                                                                                                
LQR State-Feedback Control Gain Matrix Kc1                 LQR State-Feedback Control 1 for Crane  
------------------------------------------------------------------------------------------------- 
 
KALMAN-BUCY FILTER STATE ESTIMATOR DESIGN                                                                                                                                                                
Kalman-Filter Design 1 for Overhead Crane Design Model                                                                                                                                                    
! State Observer for the Original 4-state Crane Model, Estimating  
! Positions and Velocities of the two masses from the plant output 
! 
Plant Model Used to Design the Kalman-Filter from:         Overhead Crane Design Model                                                                                                                  
Input Process Noise Matrix (G) is the  Identity                                                                                                                                                          
Process Noise Covariance Qpn is Matrix Qpn4                Process Noise Covariance Matrix Qpn4                                                                                       
Measurement Noise Covariance is Matrix Rmn2                Measurement Noise Covariance Rmn2                                                                                                     
Kalman-Filter Estimator is Gain Matrix Kf1                 Kalman-Filter Estimator 1 for Overhead  
------------------------------------------------------------------------------------------------- 

 
The estimator uses the original 4-state plant model: “Overhead Crane Design Model” which does not 
include the y1-integral. The Flixan program calculates the Kalman-Filter gain Kf1 which is exported to 
Matlab and used in the observer simulation to estimate the 4 states from the outputs y1 and θ. The 
noise covariance matrices Qpn4 and Rmn2 are located in the systems file “Crane.Qdr”. Matlab 
conversion datasets are included at the bottom of the input file to create m-files for the gains and 
systems that can be loaded into Matlab. 
  



CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Overhead Crane Analysis Model  
System 
Analysis_Plant 
------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Crane Design Model with Y1 Integral  
System 
Design_Plant_Int 
------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Control 1 for Crane Design Model with Y1 Integral 
Matrix Kc1 
------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Kalman-Filter Estimator 1 for Overhead Crane Design Model 
Matrix Kf1 
------------------------------------------------------------------------------------------------- 

 
Simulation Models 
 
Figure 6.1.2 is a simulation model “Crane_Sim-1.mdl” used to test the state-feedback gain Kc1 
directly from the four states: x= [y1, y2, 𝑦𝑦1̇,𝑦𝑦2̇] which they are not measurable, but it is intended to 
check out the control design. Figure 6.1.3 shows the system’s response to y1 displacement command, 
which is logically what a person would do naturally using common sense. First, move the top mass as 
fast as possible half way towards the intended position and stop for a short period waiting for the 
bottom mass to swing. The bottom mass does not immediately feel the motion until the pendulum 
angle θ is big enough. When the bottom mass swings over to the opposite extreme of the pendulum 
angle -θ, which is very close to the intended position, the top mass is immediately moved above the 
target position to prevent it from oscillating further. This is essentially what the LQR control system 
does in Figure 6.1.3 but it also takes into consideration the limited control system bandwidth. This 
requires knowledge of the pendulum frequency which is captured in the design plant model and 
subsequently in the control design to dampen out the pendulum oscillations. Notice the “hick-up” in 
the y2 response as it waits for the bottom mass to swing in the opposite side of the pendulum. 

 
Figure 6.1.2 State-Feedback Simulation model “Crane_Sim-1.mdl” 



 
Figure 6.1.3 System’s Response to a Displacement Command y1-command 
  



But in reality the state vector is not available, that is why we designed the Kalman-Filter observer to 
estimate the states for feedback. The simulation in Figure 6.1.4 shows the control system which 
includes the state estimator in detail below. The inputs to the estimator are the two measurements: 
y1, and θ, and also the control force. The outputs are the four states. The y1-itegral is not included 
because it is measurable. The file init.m loads the Flixan generated systems and matrices into Matlab 
for the analysis. 

 

Figure 6.1.4 Output Feedback Simulation model “Crane_Sim-2.mdl” that includes the Estimator 

  



 

Figure 6.1.5a Response of System “Crane_Sim-2.mdl” to y1 Displacement Command 

 

Figure 6.1.5 shows the response of the output-feedback system which is not very different from the 
state-feedback system. The estimator changes slightly the response. The hick-up on the y2 
displacement is not as intense as in the state-feedback case and the oscillation damping is slightly 
faster. Also, the reverse force amplitude is not as high as the forward force and it is applied for a 
longer period.  

 

  



 

Figure 6.1.5b Response of System “Crane_Sim-2.mdl” to y1 Displacement Command 

 

  



Frequency Response Analysis 

 

Figure 6.1.6 Frequency Response Analysis Model “Open_Loop.Mdl” 

 

  



Frequency response analysis is used to check out the control system’s stability in terms of gain and 
phase margins. The Simulink model “Open_Loop.Mdl” in Figure 6, that has the loop opened at the 
plant force input, is used to calculate the frequency response. Figure 6.1.7 shows the Bode and 
Nichols plots including the stability margins. Notice that the system has resonance of considerable 
amplitude at 1.42 (rad/sec) which is the pendulum frequency. This is how the control system 
counteracts the natural pendulum frequency by introducing an anti-resonance at the same frequency 
since it is designed around the plant model. Like we said earlier, the system needs to know how long 
to wait for the hick-up in order to counteract the natural frequency. Figure 6.1.7 below shows the 
phase and gain margins before and after the resonance and they are reasonable for stability. 

 

Figure 6.1.7 Open-Loop Frequency Response Analysis, Bode and Nichols Plots 

  



6.2 Design of a Space Interceptor 

 

In this example we will analyze a guided intercept between two space vehicles: an interceptor which 
is a kinetic vehicle and a target that may be a meteorite heading towards the earth, space debris, or 
an enemy missile. We assume that the interceptor has already been placed in a collision course with 
the target by a mid-course booster rocket and the vehicle is no longer accelerating but drifting 
towards the target. Its translational motion is controlled only in two directions (y and z) by firing 
divert thrusters perpendicular to the x-axis. The end-game is a dynamic engagement using closed-
loop guidance to improve impact precision and probability, especially when the target is randomly 
accelerating in order to avoid getting hit. The interceptor uses an optical sensor to track the target 
and its line-of-sight (LOS) is always pointing towards the target. It has an Attitude Control System to 
track the target at the center of the field of view by maneuvering its attitude and aligning the x-axis 
with the target.  

If the target is not maneuvering and if the mid-course boost was executed perfectly, the target would 
remain in the center of the seeker's field of view all the way to impact. If the seeker detects an error 
or the target is moving perpendicular to the LOS, the guidance will fire the corresponding divert 
thrusters to produce the necessary acceleration that will zero the error. It is assumed that the 
approximate relative position, velocity, and acceleration of the target are calculated from the seeker 
azimuth and elevation measurements, and from the target distance which is estimated from 
navigation and used in the End-Game algorithm.  



6.2.1. End-Game Dynamic Model 

The dynamic model in this Section describes the relative motion between the interceptor spacecraft 
and the target. The relative motion of the two spacecraft can be described by two sets of equations: 
one describing the relative motion along the x-direction which is along the main velocity direction 
and the LOS, and another set of equations that describe the motion perpendicular to the LOS. The 
motion along the LOS which is along the line joining the two spacecraft is uncontrollable because the 
interceptor has no thrust in the x-direction and the relative motion equation is only used to calculate 
the time to impact (tgo). The relative motion perpendicular to the LOS along the y and z directions is 
controlled by the interceptor’s divert thrusters and it is identical in both perpendicular directions. 

 

Figure 6.2.1 Interceptor Spacecraft 

 
The time-to-go calculation tgo for an accelerating target in equation 6.2.1 is calculated from the 
estimated acceleration Ax, relative velocity Vx, and the distance to target R. If the target is not 
accelerating the time-to-go simplifies to: t R Vgo x=  

t
V V RA

Ago
x x x

x

=
− + −2 2

        (6.2.1) 

 
Equation 6.2.2 describes the relative spacecraft motion perpendicular to the LOS (either y or z 
directions). It is controlled by the divert thrusters that provide the interceptor acceleration AI. It 
describes the motion in the local inertial frame which is defined by the position of the interceptor at 
the initialization time, when it initially detects the target. 
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   (6.2.2) 

The state vector consists of four states: 

Sr is the relative vehicle position (target – interceptor) 
Vr is the relative vehicle velocity (target – interceptor) 
AT is the target acceleration normal to the LOS 
AI is the interceptor acceleration perpendicular to the LOS 
 
The two inputs are: 

AIcom Interceptor Acceleration Command perpendicular to the LOS 
ATcom Target Acceleration Command perpendicular to the LOS 
 
The dynamic model in equation 6.2.2 captures the maneuverability of the two vehicles perpendicular 
to the LOS and introduces it in the control design. In addition to relative position and velocity it 
includes the target and interceptor bandwidths described by first order lags of frequencies WT and WI 
respectively, where: WT=5 (rad/sec) and WI=100 (rad/sec). Naturally the interceptor must have a 
broader bandwidth than the target because it is smaller in size. Sr and Vr are the target’s position and 
velocity relative to the kill vehicle perpendicular to the LOS. 
 
The control guidance of the interceptor must sense the relative motion of the target perpendicular to 
its x-axis using the optical sensor and apply the proper acceleration command to the thrusters in 
order to null-out the relative position at the estimated impact time. We can apply the Linear 
Quadratic Regulation to calculate the state-feedback control law that will take out the relative 
position at the expected impact. However, we must take into consideration two additional issues. The 
first issue is that there is a significant amount of noise in the measurement, especially when the 
distance-to-go is large. We don’t want the kill vehicle to be chasing noise because it will consume its 
propellant fast. Therefore, we need a control system with variable bandwidth. Starting at low 
bandwidth for fuel efficiency and increasing it inversely proportional with time-to-go in order to 
improve performance near impact, where it is needed more and the signal to noise ratio is good. The 
second issue to be considered in the design is the uncertainty in the tgo calculation which is based on 
navigation measurements and subject to delays. We want a successful hit even if it occurs a little 
sooner or a little later than the expected time. One way to improve success is to reduce the relative 
side velocity Vr to zero a short time prior to the estimated impact time, and maintain a high gain 
system all the way to impact.  

  



6.2.2. Optimal Control Design 

The previously described design requirements can be captured in the performance index of the Linear 
Quadratic Regulator algorithm. After simplifying the state-space representation of the engagement 
model and assuming that all states are available for feedback, the performance index J is defined as 
follows 
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      (6.2.3) 

 
Where: the matrices Q and P1 and the scalar R in the performance index equation 6.2.3 are weights 
that trade control acceleration versus system performance to disturbances.  
 
Q is a positive semidefinite matrix that penalizes the state error along the trajectory 
R  is a scalar that penalizes the control along the trajectory which is related to fuel  
P1  is a positive semidefinite matrix that penalizes the state vector error only at the final time tf 
 
They are selected to achieve a satisfactory trade-off between fuel consumption and robustness to 
miss distance errors, in the presence of seeker noise and range measurement errors. During the early 
part of the trajectory where the solution is steady-state, we avoid penalizing much the position and 
velocity errors perpendicular to the x-axis in the Q matrix. The terminal position and velocity states 
are heavily penalized by matrix P1, because reducing the perpendicular components of the relative 
velocity to almost zero at impact, makes the optimal control law less sensitive to range errors. 
 
The optimal state-feedback control law is obtained by synthesizing the time-varying LQR problem 
around the plant model of equation 6.2.2. Since we cannot control the target motion but only the 
interceptor’s, for control design we ignore the second input to the dynamic model and keep only the 
AIcom input. The target acceleration input will be used in the analysis. The last term in the 
performance index equation that includes the matrix P1 produces the time-varying state-feedback 
gain. The matrix P1 penalizes the terminal position and velocity, and by adjusting the velocity 
coefficient we can reduce the terminal velocity Vr to almost zero at impact, that is, in addition to the 
relative position Sr. The LQR solution in equation 6.2.4 calculates a time varying state-feedback gain 
matrix Kc(t) that optimizes the performance index of equation 6.2.3 and satisfies the design 
requirements.  
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The time-varying matrix P(t) is always positive definite and symmetric and is obtained by solving the 
transient Riccati equation 6.2.4b. Its terminal value at impact is equal to the value of the terminal 
state weight matrix P1, i.e. P(tf)=P1. This property is used for solving the Riccati equation numerically 
after initializing it at the terminal time tf and integrating backwards in time to t=0. The resulting 
control law is a time varying state-feedback that provides normal acceleration to the interceptor as a 
function of the four states, which at this point we assume that they are all available for feedback. In 
our next step we will design a Kalman-Filter to estimate the states from the system output. The same 
control law is used for both: the y and z axes, since the spacecraft is symmetric and there is no 
coupling between the y and z directions. It is important to mention that the final time tf is not 
necessarily the impact time but it may be a time before impact that we wish to switch control laws, to 
Proportional Navigation, for example. The terminal goal in this case may be to achieve favorable 
conditions for PN initialization. The optimal control design boils down to choosing a satisfactory 
trade-off between two scalars in equation 6.2.5: the fuel weight R and the terminal state weight p. A 
large R penalizes the fuel usage. The larger p gets, the more the final normal relative position and 
velocity are reduced close zero at impact. This, however, is achieved at the expense of propellant 
consumption or that the control demand may exceed the maximum acceleration capability of the 
interceptor’s thrusters. Tgi is a short period before impact when you expect the position and velocity 
to converge to zero. 
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3. State Estimator Design 

The LQR control law requires feedback from the state variables. However, most of the system states 
are not measurable and our next step is to design a state observer from the two outputs of the 
dynamic model, the relative position Sr and the interceptor acceleration AI perpendicular to the LOS. 
In this section we will present the steady-state Kalman-Bucy filter, an observer that will be used to 
approximately reconstruct the state vector from the measurements so that we can apply our optimal 
state-feedback control law. The state observer also requires knowledge of the dynamic model in 
equation 6.2.2. We shall assume that the system is corrupted by two types of noise:  state excitation 
noise, and measurement noise, as shown in equation 6.2.6. They are white noise, zero mean, and 
uncorrelated.  
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Where: 
 
x(t) is the state vector of dimension n 
u(t) is the control input vector of dimension m 
y(t) is the measurement vector of dimension r (r≤n) 
w(t) is the process noise of dimension l, where (l≤n) and has a covariance matrix Qpn,  

where: Qpn= Qpn’ ≥0 
v(t) is the measurement noise with intensity Rmn= Rmn’ ≥0 
 
The solution to the Kalman Filter is obtained by minimizing the quantity in equation 6.2.7, where the 
matrix W is (nxn) positive semi-definite. The state vector estimate 𝑥𝑥� from the KF output will converge 
to the actual system state x. Figure 6.2.2 is a functional block diagram representation of the Kalman-
Filter showing the output and its interconnection with the plant input u and output y. 
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The estimate is obtained by solving the following differential equation 6.2.8, where Kf is the Kalman-
Filter gain. The solution exists when the pair (A’,C’) is stabilizable and the pair (A, GQpnGT) is 
detectable. The state estimate is initialized with the expected initial state vector at t=0,
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The matrix P is symmetric positive semi-definite and it is obtained from the steady-state solution of 
the asymptotic Riccati equation 
A P P A G Q G P C R C PT

pn
T T

mn+ + − =−1 0       (6.2.9) 

 

Figure 6.2.2 Kalman-Filter State-Vector Estimator 
 
6.2.4. Continuous System Analysis 

The analysis files for the continuous system in this example are located in folder: “LQG\Examples\ 
End-Game\Continuous”. There is also a discrete subfolder “Discrete” for the discrete-time analysis 
using dynamic models which are discretized at 40 (msec) sampling time. The directory includes the 
input file “End_Game_s.Inp”, shown below, that contains input data for the continuous LQR design 
using Flixan. That is, for the steady-state LQR control, the time-varying state-feedback LQR, the 
Kalman-Filter, and for the steady-state output-feedback LQG design that combines the steady-state 
LQR gain Kc and the Kalman-Filter gain Kf to a dynamic output-feedback controller. The input file also 
includes a batch set for fast data processing and datasets for Matlab conversions. The systems 
filename “End_Game_s.Qdr” contains the End-Game dynamic model described in Equation 6.2.2, the 
control design matrices: Qc, Rc, and P1, the Kalman-Filter design matrices Qmn, Rmn, the control gain Kc 
and the Kalman-Filter gain Kf which are generated by the Flixan LQR design program. 



BATCH MODE INSTRUCTIONS ...............                                                              
Batch for preparing End-Game Control design Models 
! This batch Generates LQR State-Feedback, Kalman-Filter and Output 
! Feedback Dynamic Controller 
Retain System    : Simple End-Game Model   
Retain Matrix    : State Weight Matrix Qc (4x4)  
Retain Matrix    : Output Weight Matrix Qc (2x2)        
Retain Matrix    : Control Weight Matrix Rc     
Retain Matrix    : Terminal State Weight Matrix P1 (4x4)     
Retain Matrix    : Performance Criteria C1       
Retain Matrix    : Output Performance Weight Matrix Qc3     
Retain Matrix    : Measurement Noise Matrix Rmn (2x2)    
Retain Matrix    : Process Noise Matrix Qpn (4x4)              
! 
LQR Control Des  : LQR Control Design for Simple End-Game Model      
State Estimator  : Kalman-Filter Design for Simple End-Game Model   
LQG Control Des  : LQG Control Design for Simple End-Game Model 
Transient LQR    : Transient LQR Design for Simple End-Game Model  
! 
To Matlab Format : Simple End-Game Model 
To Matlab Format : LQG Control Design for Simple End-Game Model  
To Matlab Format : LQR State-Feedback Control for Simple End-Game Model  
To Matlab Format : Kalman-Filter Estimator for Simple End-Game Model 
------------------------------------------------------------------------------------------------------- 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN                                                                                                                                                 
LQR Control Design for Simple End-Game Model                                                                                                                                                           
! Design the State-Feedback Matrix Kc using the Output  
! Criteria Matrix C= Identity 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model                                                                                                                         
Criteria Optimization Output is Matrix Identity                                                                                                                                                          
State Penalty Weight (Qc) is Matrix:   Qc4                 State Weight Matrix Qc (4x4)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc                                                                                                                      
Continuous LQR Solution Using Laub Method                                                                                                                                                                
LQR State-Feedback Control Gain Matrix Kc                  LQR State-Feedback Control for Simple End-  
------------------------------------------------------------------------------------------------------- 
KALMAN-BUCY FILTER STATE ESTIMATOR DESIGN                                                                                                                                                                
Kalman-Filter Design for Simple End-Game Model                                                                                                                                                         
! Design the Kalman-Filter Gain Matrix Kf using the 
! Process Noise Matrix G = Identity 
! 
Plant Model Used to Design the Kalman-Filter from:         Simple End-Game Model                                                                                                                          
Input Process Noise Matrix (G) is the  Identity                                                                                                                                                          
Process Noise Covariance Qpn is Matrix Qpn                 Process Noise Matrix Qpn (4x4)                                                                                                                
Measurement Noise Covariance is Matrix Rmn                 Measurement Noise Matrix Rmn (2x2)                                                                                                            
Kalman-Filter Estimator is Gain Matrix Kf                  Kalman-Filter Estimator for Simple End-Game  
------------------------------------------------------------------------------------------------------- 
DYNAMIC OUTPUT FEEDBACK LQG CONTROL DESIGN                                                                                                                                                               
LQG Control Design for Simple End-Game Model                                                                                                                                                           
! Combine State-Feedback with KF Gain to Design a Linear Quadratic  
! Gaussian Control System for the Plant: Simple End-Game Model 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model                                                                                                                         
State-Feedback (Kc) is Gain Matrix   : Kc                  LQR State-Feedback Control for Simple End-  
Kalman-Filter Estim Kf is Gain Matrix: Kf                  Kalman-Filter Estimator for Simple End-Game  
------------------------------------------------------------------------------------------------------- 
TRANSIENT LQR CONTROL DESIGN WITH TIME-VARYING GAINS                                                                                                                                                     
Transient LQR Design for Simple End-Game Model                                                                                                                                                         
! To Generate Time-Varying State-Feedback Gain Kc(t) 
! as a Function of Time-to-Go, in File: Gains.dat 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model                                                                                                                         
Criteria Optimization Output is Matrix Identity                                                                                                                                                          
State Penalty Weight (Qc) is Matrix:   Qc4                 State Weight Matrix Qc (4x4)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc                                                                                                                      
Terminal State Penalty Weigh P1 Matrix P1                  Terminal State Weight Matrix P1 (4x4)                                                                                                         
Continuous LQR Solution, Final Time, Number of Points:     20.00     800.0                                                                                                                          
------------------------------------------------------------------------------------------------------- 
  



CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Simple End-Game Model 
System 
end_game 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQG Control Design for Simple End-Game Model  
System 
Control 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Control for Simple End-Game Model  
Matrix Kc 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Kalman-Filter Estimator for Simple End-Game Model 
Matrix Kf 
------------------------------------------------------------------------------------------------------- 

 
The Flixan LQR transient design program also calculates the time varying state-feedback gain Kc(t) as a 
function of time-to-go. It requires the weight matrices: Qc, Rc, and P1, the initial time-to-go (20 sec), 
and the number of gain calculation points (800). The gains versus time are saved in file “Gains.dat” 
with the time-to-go in the first column. This file is used as a look-up table in the simulation. Only the 
first 4 gains that correspond to the interceptor acceleration command are used in this case. The end-
game dynamic model is saved in file “end_game.m”, and the steady-state output-feedback control 
system is saved in “control.m” for Matlab analysis. The gain matrices Kc and Kf are also saved and 
loaded into Matlab. 

6.2.4.1 Simulation Models 
 
We will first analyze the steady state-performance of the spacecraft and then the transient motion 
with time varying state-state gains. Two simulation models were created to analyze the system’s 
response from some initial relative condition of position, velocity and acceleration. 

6.2.4.2 Continuous Steady-State Simulation 
 
The steady-state analysis is applicable when the target is sufficiently far away from the interceptor 
and the control gains are constant. The Simulink model is “EndGame_Sim1s.mdl”, shown in Figure 
6.2.3, and it is located in the same “End-Game/ Continuous” subfolder. 



 

Figure 6.2.3 Steady-State Simulation Model “EndGame_Sim1s.mdl” 



The plant model is the Flixan generated system “Simple End-Game Model” in file “end_game.m”. The 
LQG control system calculated by Flixan is: “LQG Control Design for Simple End-Game Model” in file 
“Control.m”. It is the dynamic system shown in Figure 6.2.4, consisting of plant model parameters (A, 
B, C), the steady-state feedback gain Kc and the Kalman-Filter gain Kf. The two systems and matrices 
are loaded into Matlab by executing the m-file “init.m”, which also initializes the state-vector x0. 
Notice, that this configuration cannot be used in the time-varying case because Kc(t) is varying. 

 

Figure 6.2.4 Steady-State LQG Output Feedback Controller/ Plant Interconnection 

We can use this simulation model to calculate the system’s response to an accelerating target 
disturbance, as shown in Figure 6.2.5.  

 
Figure 6.2.5 Interceptor Acceleration is responding to Noisy Target Accelerations 



 
Figure 6.2.6 System’s Response from Non-Zero Initial Conditions of Relative Position and Velocity 

This simulation is also used to calculate the system’s response to initial position and velocity errors 
with an accelerating target, see Figure 6.2.6. Notice that the system’s response at steady-state is 
intentionally slow in order to save propellant since the target is still far away. This causes noticeable 
position error due to target acceleration. 



6.2.4.3 Continuous Simulation with Time Varying Control Gains  

The continuous simulation model in Figure 6.2.7 is in file “EndGame_Sim2s.mdl”. It uses time-varying 
gains as a function of time-to-go which are loaded into Matlab look-up tables from file “Gains.dat”. 
They were calculated by the Flixan Transient LQR program as already mentioned. The tgo is calculated 
from the relative axial position, velocity and acceleration and used to look-up the gains which 
increase as tgo gets shorter resulting into an exponentially increasing control bandwidth. 

 

The Kalman-Filter and the control system are separate subsystems in this simulation. The Kalman-Filter is now 
used to estimate the four state variables from the relative position and the accelerometer measurements. The 
estimated states are multiplied with the four time varying gains to produce the acceleration command. The 
gains are functions of tgo which is calculated from the relative x-axis acceleration, velocity and range to go. 



 

Figure 6.2.7 Simulation Model “EndGame_Sim2s.mdl” that uses Time-Varying Gains 



 

Figure 6.2.8 System’s Response from Non-Zero Initial Conditions of Relative Position and Velocity 

Figure 6.2.8 shows the response of the time-varying control system to non-zero initial conditions 
versus time-to-go, beginning 8.5 sec before impact when the gains are still at steady state. Beginning 
with initial position and velocity errors 500 (feet) and 100 (ft/sec) respectively, the interceptor 
(orange) accelerates in order to bring the final position and velocity errors very close to zero at 
impact. 



6.2.5. Discrete-Time Analysis 
 
The discrete-time analysis is similar. The files are located in subfolder “LQG\Examples\End-
Game\Discrete”. It includes the input file “End_Game_z.Inp”, shown below, that contains input data 
for the design programs. That is, for the discrete steady-state LQR control, the discrete time-varying 
state-feedback LQR, the discrete Kalman-Filter, and for the discrete steady-state dynamic output-
feedback LQG design. The input file also includes a batch set for fast data processing and datasets for 
Matlab conversions. The systems filename “End_Game_z.Qdr” contains the End-Game dynamic 
model “Simple End-Game Model, Z-Transform”, which is a z-transformation of the continuous model 
“Simple End-Game Model” described in Equation 6.2.2, discretized at 40 (msec) sampling period. The 
systems file also contains the control design matrices: Qc, Rc, and P1, the Kalman-Filter design 
matrices Qmn, Rmn, the control gain Kc and the Kalman-Filter gain Kf which are generated by the Flixan 
LQR design program.  
 
BATCH MODE INSTRUCTIONS ...............                                                              
Batch for preparing End-Game Control design Models 
! This batch Generates LQR State-Feedback, Kalman-Filter and Output 
! Feedback Dynamic Controller 
Retain System    : Simple End-Game Model   
Retain Matrix    : State Weight Matrix Qc (4x4)  
Retain Matrix    : Control Weight Matrix Rc     
Retain Matrix    : Terminal State Weight Matrix P1 (4x4)     
Retain Matrix    : Measurement Noise Matrix Rmn (2x2)    
Retain Matrix    : Process Noise Matrix Qpn (4x4)       
Retain Matrix    : Input Noise Matrix G      
Retain Matrix    : Process Noise Matrix Qpn1       
! 
S-Z-Transform    : Simple End-Game Model, Z-Transform 
LQR Control Des  : LQR Control Design for Discrete End-Game Model   
State Estimator  : Kalman-Filter Design 2 for Discrete End-Game Model    
LQG Control Des  : LQG Control Design for Discrete End-Game Model  
Transient LQR    : Transient LQR Design for Discrete End-Game Model  
! 
To Matlab Format : Simple End-Game Model, Z-Transform 
To Matlab Format : LQG Control Design for Discrete End-Game Model  
To Matlab Format : LQR State-Feedback Control for Discrete End-Game Model 
To Matlab Format : Kalman-Filter Estimator 2 for Discrete End-Game Model 
------------------------------------------------------------------------------------------------------- 
TRANSFORM A SYSTEM (S-Z-W) ..... (Z system title, Comments, S-System title, Transform) 
Simple End-Game Model, Z-Transform 
! Discretize the Continuous End-Game Model at dT=0.04 sec Using the  
! S to Z Transformation 
! 
Simple End-Game Model   
From S-plane to Z-plane using the Z-Transform, dT= 0.04 
---------------------------------------------------------------------------------------------------- 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN          
LQR Control Design for Discrete End-Game Model                                                                                                                                           
! Design the Discrete Steady-State-Feedback Matrix Kc using the  
! Output Criteria Matrix C= Identity 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model, Z-Transform                                                                                                  
Criteria Optimization Output is Matrix Identity                                                                                                                                                          
State Penalty Weight (Qc) is Matrix:   Qc4                 State Weight Matrix Qc (4x4)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc                                                                                                                
Discrete LQR Solution Using Assymptotic Method                                                                                                                                                           
LQR State-Feedback Control Gain Matrix Kc                  LQR State-Feedback Control for Discrete End- 
------------------------------------------------------------------------------------------------------- 
  



KALMAN-BUCY FILTER STATE ESTIMATOR DESIGN                                                                                                                                                                
Kalman-Filter Design for Discrete End-Game Model                                                                                                                                         
! Design the Discrete Kalman-Filter Gain Matrix Kf using the 
! Process Noise Matrix G 
! 
Plant Model Used to Design the Kalman-Filter from:         Simple End-Game Model, Z-Transform                                                                                                       
Input Process Noise Matrix is Matrix   G                   Input Noise Matrix G                                                                                          
Process Noise Covariance Qpn is Matrix Qpn                 Process Noise Matrix Qpn1                                                                                                       
Measurement Noise Covariance is Matrix Rmn                 Measurement Noise Matrix Rmn (2x2)                                                                                                       
Kalman-Filter Estimator is Gain Matrix Kf                  Kalman-Filter Estimator for Discrete End-  
------------------------------------------------------------------------------------------------------- 
KALMAN-BUCY FILTER STATE ESTIMATOR DESIGN                                                                                                                                                                
Kalman-Filter Design 2 for Discrete End-Game Model                                                                                                                                              
Plant Model Used to Design the Kalman-Filter from:         Simple End-Game Model, Z-Transform                                                                                                            
Input Process Noise Matrix (G) is the  Identity                                                                                                                                                          
Process Noise Covariance Qpn is Matrix Qpn                 Process Noise Matrix Qpn (4x4)                                                                                                                
Measurement Noise Covariance is Matrix Rmn                 Measurement Noise Matrix Rmn (2x2)                                                                                                            
Kalman-Filter Estimator is Gain Matrix Kf                  Kalman-Filter Estimator 2 for Discrete End-  
------------------------------------------------------------------------------------------------------- 
DYNAMIC OUTPUT FEEDBACK LQG CONTROL DESIGN                                                                                                                                                               
LQG Control Design for Discrete End-Game Model                                                                                                                                                           
! Combine State-Feedback with KF Gain to Design a Linear Quadratic  
! Gaussian Control System for the Plant: Simple End-Game Model, Z-Transform  
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model, Z-Transform                                                                                                          
State-Feedback (Kc) is Gain Matrix   : Kc                  LQR State-Feedback Control for Discrete End-
Game Model                                                                                   
Kalman-Filter Estim Kf is Gain Matrix: Kf                  Kalman-Filter Estimator 2 for Discrete End-
Game Model                                                                                           
------------------------------------------------------------------------------------------------------- 
TRANSIENT LQR CONTROL DESIGN WITH TIME-VARYING GAINS                                                                                                                                                     
Transient LQR Design for Discrete End-Game Model                                                                                                                                                       
! To Generate Time-Varying State-Feedback Gain Kc(t) 
! as a Function of Time-to-Go, in File: Gains.dat 
! 
Plant Model Used to Design the Control System from:        Simple End-Game Model, Z-Transform                                                                                                       
Criteria Optimization Output is Matrix Identity                                                                                                                                                          
State Penalty Weight (Qc) is Matrix:   Qc4                 State Weight Matrix Qc (4x4)     
Control Penalty Weight (Rc) is Matrix: Rc                  Control Weight Matrix Rc           
Terminal State Penalty Weigh P1 Matrix P1                  Terminal State Weight Matrix P1 (4x4)                                                                                                        
Discrete LQR Solution, Final Time (Tf) in (sec)             20.0                                                                                                                                
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Simple End-Game Model, Z-Transform 
System 
end_game 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQG Control Design for Discrete End-Game Model  
System 
Control 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Kalman-Filter Estimator 2 for Discrete End-Game Model    
Matrix Kf 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Control for Discrete End-Game Model     
Matrix Kc 
------------------------------------------------------------------------------------------------------- 

 
The discrete LQR transient design program also calculates the time varying state-feedback gain Kc(t) 
as a function of time-to-go. It requires the weight matrices: Qc, Rc, and P1, and the initial time-to-go 
(20 sec). The gains versus time are saved in file “Gains.dat” which is used as a look-up table in the 
simulation. The discrete end-game dynamic model is saved in file “end_game.m”, and the discrete 
steady-state output-feedback controller is saved in “control.m” for Matlab analysis. The gain matrices 
Kc and Kf are also saved and loaded into Matlab. Two discrete Simulink models are included for 
analysis: a steady-state model, and a time-varying model, both running at 40 msec sampling. 



 
6.2.5.1 Discrete Steady-State 
Simulation 
 
The steady-state model is used to analyze the 
system when the target is sufficiently far away 
from the interceptor and the control gains are 
constant. The Simulink model is “EndGame-
Sim1z.mdl”, shown in Figure 6.2.9, and it is 
located in “LQG\ Examples\End-Game\ Discrete” 
subfolder.

 

Figure 6.2.9 Discrete Steady-State Simulation Model “EndGame_Sim1z.mdl” 



 

Figure 6.2.10 Discrete System’s Response from Non-Zero Initial Conditions of Relative Position and Velocity 

Figure 6.2.10 shows discrete system’s response to a randomly accelerating target. The dynamic 
model is initialized at some arbitrary non-zero relative position and velocity errors. The interceptor 
acceleration responds to the target’s average acceleration and the relative position and velocity are 
considerably reduced. Notice that this is steady-state condition where the interceptor’s response is 
slow. The engagement becomes a lot more dynamic when tgo approaches zero. 



6.2.5.2 Discrete Simulation with Time Varying Gains  

The discrete simulation model in Figure 6.2.11 is in file “EndGame_Sim2z.mdl”. It uses time-varying gains 
as a function of time-to-go loaded from file “Gains.dat”, and it is very similar to the continuous model 
“EndGame_Sim2s.mdl”. The gains are calculated from the discrete Transient LQR program as already 
described. The gains are functions of tgo which is calculated from the relative axial position, velocity and 
acceleration and they increase as the vehicle approaches the target and tgo becomes shorter. The discrete 
Kalman-Filter estimates the four state variables from the relative position and the accelerometer 
measurements. The response of the discrete system is similar to the continuous model’s response. Both, 
relative position and relative velocity are reduced to almost zero at impact, as shown in Figure 6.2.12. 

 



 

Figure 6.2.11 Discrete Simulation Model “EndGame_Sim2z.mdl” that uses Time-Varying Gains 

 

Figure 6.2.12 Discrete System’s Response from Non-Zero Initial Conditions of Relative Position and Velocity 



 

 

 
In this example we analyze a cruising missile that has a small wing to provide lift and a fixed thrust 
engine that does not gimbal nor throttle. The missile is released horizontally from an aircraft and it 
climbs at high altitudes. It is controlled by three aero-surfaces located in the tail section consisting of: 
a vertical rudder mainly for yaw control and two horizontal rotating fins for pitch and roll control, see 
Figure 1.1. There are no control surfaces on the wing. Since the engine is not gimbaling, it is the wing 
in combination with the elevon aerosurfaces that provides the necessary lift for the vehicle to climb. 
The attitude, rate, and acceleration are measured by an Inertial Measurements Unit (IMU) located in 
the front section. The angles of attack and sideslip are not measured relative to the wind but the 
flight path angle γ and the heading direction ξ are inertially estimated from navigation. We will use 
Flixan to generate dynamic models at a critical flight condition, which is: Mach 2.5, 10 degrees of 
angle of attack, and high dynamic pressure of 1220 psf. We will design LQR control laws for the pitch 
and lateral dynamics separately, and analyze stability and performance using Matlab. 

  



1. Flight Control System Description 

Figure 1.1 shows the missile with the wing and the three tail aerosurfaces consisting of a vertical 
rudder for yaw control, an elevon for pitch control produced by equally rotating the left and right fins 
in the same direction, and an aileron for roll control produced by rotating the left and right fins 
differentially. The missile is released horizontally from an aircraft, climbs to orbital altitude and tracks 
a pre-calculated flight path and heading directions, mainly along the direction it is released.  

 

Figure 1.1 Missile Configuration showing the Aerosurfaces, Wing, CG, and Sensor Locations. 

 
The thrust is not used for control but it produces an acceleration which is captured in the vehicle data 
and model. The purpose of the flight control system is to stabilize the vehicle and to track a 
predesigned trajectory path in both: longitudinal gamma-tracking, and in the lateral heading direction 
tracking. Since the vehicle is perfectly symmetric the analysis will be separated in pitch and lateral 
control design and analysis that will be performed in separate subdirectories. The pitch vehicle model 
is in the input file “Pitch_LQR_Des.Inp” which is located in directory “Flixan\Control Analysis\LQG\ 
Examples\Missile Control Design\Pitch LQR”. The lateral vehicle model is in the input file 
“Later_LQR_Des.Inp” which is located in directory “Flixan\Control Analysis\LQG\Examples\ Missile 
Control Design\Lateral LQR”. Pitch and Lateral control design models will be created for LQR state-
feedback and we assume that all states x are available for feedback.  



The design models will be augmented by including the aerosurface actuators and integrals of some of 
the states. The augmented design models improve speed of response and the tracking performance 
of the control system. We will also create pitch and lateral models for control analysis and 
simulations. The Flixan program will be used to perform dynamic modeling and control design and 
Matlab for the simulations. The dynamic models and control gains are converted from the system 
files and loaded into Matlab for analysis.  

Note that in this example the incidence angles α and β, which are used to synthesize the flight-path 
and heading directions, do not see the effects of a wind-gust directly because γ and ξ are estimated 
from navigation and they do not represent motion relative to the moving air mass. This is introduced 
in the flight vehicle input data by a flag label “NoWind Alpha” in the flags line, to indicate the type of 
(α, β) measurement. It means that the wind velocity components wgust and vgust are not included in 
the α and β calculations, only the vehicle velocities w and v. A wind-gust, however, will produce 
forces and moments on the vehicle and it will affect its motion, but the gust itself is not seen directly 
in the output as it would be if it was an air-data probe, only its effect on the vehicle will be 
observable. 

  



2.1 Longitudinal Control Design and Analysis 

The input file for the longitudinal axis design is “Pitch_LQR_Des.Inp” located in subdirectory “Control 
Analysis\LQG\Examples\Missile Control Design\Pitch LQR”. It contains several Flixan datasets that 
generate plant models and perform steady-state LQR state-feedback control design. They are 
processed by a batch set located at the top of the file. The batch first retains the control weight 
matrices Qc and Rc from getting erased in systems file “Pitch_LQR_Des.Qdr”. Then it generates the 
vehicle model “Missile with Wing, Mach: 2.5, Qbar: 1220” that includes both pitch and lateral 
dynamics. The initial pitch design model is then extracted from the above system and saved as 
“Missile with Wing Pitch Design Model”. It consists of one input, Elevon deflection in (rad), and 3 
outputs: pitch attitude, rate, and angle of attack in radians. A second longitudinal system is also 
created with title: “Missile with Wing Pitch Analysis Model”. It includes a wind-gust velocity input in 
(feet/sec) and other outputs, and it will be used in simulations. The direction of the gust is 
perpendicular to the vehicle x-axis, and along the –z direction to excite the pitch dynamics, as defined 
in the vehicle input data by the wind azimuth and elevation angles (0⁰ and 90⁰). 

BATCH MODE INSTRUCTIONS ...............                                                              
Batch for Designing Missile with Wing Pitch Models and Gains 
! 
! This batch set creates the Design and Analysis models for a 
! Missile with Wing at 2.5 Mach, and performs LQR design.  
! The Missile has a fixed Thrust and it is controlled by 3 Aerosurfaces 
! 
!                  Control design Matrices 
Retain Matrix    : State Weight Matrix Qc (5x5)  
Retain Matrix    : Control Weight Matrix Rc  
! 
Flight Vehicle   : Missile with Wing, Mach: 2.5, Qbar: 1220 
System Modificat : Missile with Wing Pitch Design Model  
System Modificat : Missile with Wing Pitch Analysis Model  
Transf-Functions : Actuator: 34/(s+34) 
Transf-Functions : Integrator     
System Connection: Augmented Pitch Design Model 
System Modificat : Augmented Pitch Design Model-2 
LQR Control Des  : LQR Control Design for Augmented Design Model 
!                  Convert to Matlab 
To Matlab Format : LQR State-Feedback Control for Augmented Design Model 
To Matlab Format : Missile with Wing Pitch Analysis Model  
------------------------------------------------------------------------------------------------------------------ 
  



FLIGHT VEHICLE INPUT DATA ...... 
Missile with Wing, Mach: 2.5, Qbar: 1220 
! Rigid-Body Missile controlled by 3 aerosurfaces. The engine has fixed thrust 
! and does not gimbal 
Body Axes Output, Attitude=Euler Angles, NoWind Alpha 
  
Vehicle Mass (lb-sec^2/ft), Gravity Accelerat. (g) (ft/sec^2), Earth Radius (Re) (ft)    :   1219.1, 32.07,  
Moments and products of Inertias Ixx, Iyy, Izz, Ixy, Ixz, Iyz, in (lb-sec^2-ft)          :   0.4063E+04 0.1654E+06  
CG location with respect to the Vehicle Reference Point, Xcg, Ycg, Zcg, in (feet)        :   26.19, 0.0,  -0.15 
Vehicle Mach Number, Velocity Vo (ft/sec), Dynamic Pressure (psf), Altitude (feet)       :   2.5, 2427.4,1220.6,        
Inertial Acceleration Vo_dot, Sensed Body Axes Accelerations Ax,Ay,Az (ft/sec^2)         :   60.0, 60.0, 0.0, 10.5 
Angles of Attack and Sideslip (deg), alpha, beta rates (deg/sec)                         :   10.5, 0.0, 0.0, 0.0     
Vehicle Attitude Euler Angles, Phi_o,Thet_o,Psi_o (deg), Body Rates Po,Qo,Ro (deg/sec)   :   0.0,39.6,0.0, 0.0, 0.132,   
Wind Gust Vel wrt Vehi (Azim & Elev) angles (deg), or Force(lb), Torque(ft-lb), locat:xyz:   Gust  00.0  90.0     
Surface Reference Area (feet^2), Mean Aerodynamic Chord (ft), Wing Span in (feet)        :   145.4, 22.0, 22.0     
Aero Moment Reference Center (Xmrc,Ymrc,Zmrc) Location in (ft), {Partial_rho/ Partial_H} :   26.19, 0.0, -0.238, 0.0  
Aero Force Coef/Deriv (1/deg), Along -X, {Cao,Ca_alf,PCa/PV,PCa/Ph,Ca_alfdot,Ca_q,Ca_bet}:   0.1, 0.002, 0.0, 0.0,  
Aero Force Coeffic/Derivat (1/deg), Along Y, {Cyo,Cy_bet,Cy_r,Cy_alf,Cy_p,Cy_betdot,Cy_V}:   0.0, -0.023, 0.0, 0.0,  
Aero Force Coeff/Deriv (1/deg), Along Z, {Czo,Cz_alf,Cz_q,Cz_bet,PCz/Ph,Cz_alfdot,PCz/PV}:  -0.1, -0.032, 0.0, 0.0,      
Aero Moment Coeffic/Derivat (1/deg), Roll: {Clo, Cl_beta, Cl_betdot, Cl_p, Cl_r, Cl_alfa}:   0.0, -0.0017,0.0,-0.243,    
Aero Moment Coeff/Deriv (1/deg), Pitch: {Cmo,Cm_alfa,Cm_alfdot,Cm_bet,Cm_q,PCm/PV,PCm/Ph}:  -0.037,-0.011, 0.0,0.0,    
Aero Moment Coeffic/Derivat (1/deg), Yaw : {Cno, Cn_beta, Cn_betdot, Cn_p, Cn_r, Cn_alfa}:   0.0, 5.6e-4, 0.0,0.1388,   
 
Number of Control Surfaces, With or No TWD (Tail-Wags-Dog and Hinge Moment Dynamics) ?   :  3   No TWD 
 
Control Surface No:  1                                                                     Elevator     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0  30.0 -30.0 0.000         
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0  0.0  0.0  0.0           
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0  0.0  0.0  0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0  0.0  0.0  
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00003 -0.0 -0.0087, 0.00   
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}:  0.0 -0.0072 0.0  0.0        
 
Control Surface No:  2                                                                     Aileron     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0 30.0  -30.0 0.0       
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0   0.0  0.0  0.0           
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0  0.0   0.0    0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0    0.0     0.0   
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00003 0.0011 0.0  0.0        
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}: -6.54e-4 0.0  -0.0014  0.0       
 
Control Surface No:  3                                                                     Rudder     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0 30.0 -30.0 0.000         
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0 0.0 0.0 0.0  0.0      
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0 0.0 0.0 0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0 0.0 0.0  
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00001 0.0034 0.0 0.0        
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}:  5.9456e-4 0.0 -0.0035         
 
Number of Bending Modes                                                                  :  0 
---------------------------------------------------------------------------------------------------------------------- 
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Missile with Wing Pitch Design Model                                                
Missile with Wing, Mach: 2.5, Qbar: 1220                     
! The initial pitch design system is extracted from the coupled RB system above   
!                                    
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract Inputs :   1   
Extract States :   3   4   7 
Extract Outputs:   3   4   7 
---------------------------------------------------------------------------------------------------------------------- 
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Missile with Wing Pitch Analysis Model                                                
Missile with Wing, Mach: 2.5, Qbar: 1220                   
! The Pitch Analysis/ Simulation system is extracted from the coupled RB system above      
!                                 
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract Inputs :   1   4 
Extract States :   3   4   7   9  10 
Extract Outputs:   3   4   7   9  10  14 
---------------------------------------------------------------------------------------------------------------------- 

 
The system modification datasets extract the longitudinal variables from the coupled system “Missile 
with Wing, Mach: 2.5, Qbar: 1220” and save them in file “Pitch_LQR_Des.Qdr” as separate systems.  

  



The original design plant, however, is not capable to produce an efficient control design. In the 
longitudinal direction we would like to command and track a pre-calculated flight path angle (γ) and 
the initial design model is not equipped to regulate γ. We must create, therefore, and regulate a 
“γ−integral” state and include it in the design model. It is also good to include a simple actuator 
model in the plant dynamics because it introduces more plant information in the design and makes 
the control system more efficient with less phase-lag. The two additional variables γ and δelevon are 
both measurable. 

 

Figure 2.1 Augmented Longitudinal Design Plant for LQR Control Design 

Figure 2.1 shows the augmented plant for the longitudinal LQR control design. The following 
interconnection dataset combines the 3 subsystems and generates the augmented system as 
“Augmented Pitch Design Model”. The order of the states, however, is not the same as the outputs 
and it is modified for convenience to “Augmented Pitch Design Model-2” which makes the C matrix 
equal to the identity I5. 

  



INTERCONNECTION OF SYSTEMS ..... 
Augmented Pitch Design Model 
! Create a 5-State Augmented Model that Includes Gamma-integral and  
! Elevon deflection in the state vector for Pitch Control Design 
! 
Titles of Systems to be Combined    
Title 1 Actuator: 34/(s+34) 
Title 2 Missile with Wing Pitch Design Model  
Title 3 Integrator 
SYSTEM INPUTS TO SUBSYSTEM  1                                                          to Actuator 
System Input  1 to Subsystem  1, Input  1, Gain= 1.0                                   Delta Command 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  2                                                       Vehicle Plant 
System Output  1 from Subsystem  2, Output  1, Gain= 1.0                               theta 
System Output  2 from Subsystem  2, Output  2, Gain= 1.0                               q - pitch rate 
System Output  3 from Subsystem  2, Output  3, Gain= 1.0                               alpha 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  3                                                       Integrator 
System Output  4 from Subsystem  3, Output  1, Gain= 1.0                               gamma-integral 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  1                                                       Actuator 
System Output  5 from Subsystem  1, Output  1, Gain= 0.0294118                         delta-elevon 
.............................................................................. 
SUBSYSTEM NO  1 GOES TO SUBSYSTEM NO  2                                                Actuator to Vehicle                                          
Subsystem  1, Output  1 to Subsystem  2, Input  1, Gain=   1.0000                      Elevon deflect           
...................................................................... 
SUBSYSTEM NO  2 GOES TO SUBSYSTEM NO  3                                                Vehicle to Integrator                                     
Subsystem  2, Output  1 to Subsystem  3, Input  1, Gain=   1.0000                      Gamma= Theta 
Subsystem  2, Output  3 to Subsystem  3, Input  1, Gain=  -1.0000                            -Alpha    
...................................................................... 
Definitions of Inputs  =   1 
Elevon Deflection Command (delta) rad 
 
Definitions of Outputs =   5 
Pitch Attitude, theta  (rad) 
Pitch Rate, q (rad/sec) 
Angle of Attack, alpha (rad) 
Gamma-Integral (rad-sec) 
Elevon Deflection, delta-elev (rad) 
------------------------------------------------------------------------------- 
 
SYSTEM OF TRANSFER FUNCTIONS ... 
Actuator: 34/(s+34) 
! First order Actuator 34 (rad/sec) Bandwidth 
Continuous 
TF. Block #  1 34/(s+34)                                   Order of Numer, Denom=  0  1 
Numer 0.0         34.0 
Denom 1.0         34.0 
------------------------------------------------------------------------------- 
Block #, from Input #, Gain 
  1  1    1.00000 
........................... 
Outpt #, from Block #, Gain 
  1  1    1.00000 
........................... 
Definitions of Inputs  =   1 
Delta Command                                                                 
  
Definitions of Outputs =   1 
Delta Out                                                 
------------------------------------------------------------------------------- 
 
SYSTEM OF TRANSFER FUNCTIONS ... 
Integrator 
Continuous 
TF. Block #  1  1/s                                       Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
------------------------------------------------------------------------------- 
Block #, from Input #, Gain 
  1  1    1.00000 
........................... 
Outpt #, from Block #, Gain 
  1  1    1.00000 
........................... 
------------------------------------------------------------------------------- 
  



CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Augmented Pitch Design Model-2 
Augmented Pitch Design Model 
! Rearange the Order of States to be the same as the Outputs 
! Makes C=Identity 
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract States :   2   3   4   5   1 
Extract Outputs:   1   2   3   4   5 
---------------------------------------------------------------------------------------------------- 
 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN                                                                                                                                                 
LQR Control Design for Augmented Design Model                                                                                                                                                          
Plant Model Used to Design the Control System from:      Augmented Pitch Design Model-2                                                                                                                        
Criteria Optimization Output is Matrix C                                                                                                                                                                 
State Penalty Weight (Qc) is Matrix:   Qc5               State Weight Matrix Qc (5x5)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc                Control Weight Matrix Rc                                                                                                                      
Continuous LQR Solution Using Laub Method                                                                                                                                                                
LQR State-Feedback Control Gain Matrix Kc                LQR State-Feedback Control for Augmented Design Model                                                                                       
--------------------------------------------------------------------------------------------------------------------- 
 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Control for Augmented Design Model 
Matrix Kc 
-------------------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Missile with Wing Pitch Analysis Model  
System 
Vehi_pitch.m 
-------------------------------------------------------------------------------------------------------------------- 
END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END- 

 
The dataset “LQR Control Design for Augmented Design Model” performs the LQR control design on 
the plant “Augmented Pitch Design Model-2”. It uses the C matrix for criteria which is the identity 
matrix and the (5x5) weight matrix Qc to penalize the states individually. The scalar Rc penalizes the 
Elevon control. The weight matrices are already set in the systems file. The LQR program generates 
the (1x5) state-feedback matrix Kc that stabilizes the plant by closing the control loop between the 
state vector and the Elevon input. The matrix is also saved in the systems file under the title “LQR 
State-Feedback Control for Augmented Design Model”. The matrix Kc and the pitch analysis model are 
also saved in Matlab format as “Kc.mat” and “vehi_pitch.m” respectively for further analysis. 

2.2 Longitudinal Simulation 

The simulation model “Pitch_Sim.mdl” in Figure 2.2, is in folder “Flixan\Control Analysis\LQG\ 
Examples\Missile Control Design\Pitch LQR”. It has the 5-state-feedback loop closed via matrix Kc 
which includes γ-integral and δelevon feedback in addition to the feedback from the original vehicle 
states (θ, q, α). In Figure 2.3 the vehicle is commanded to perform 1⁰ increase in γ. In Figure 2.4 the 
missile is excited by an upward wind-gust velocity impulse. 



 

Figure 2.2 Longitudinal Axes Closed-Loop Simulation Model “Pitch_Sim.mdl” 

 

Figure 2.3 Flight Path Angle Responds to 1 degree Gamma Command 



 

Figure 2.3b Missile Responds to the Gamma Command. Negative Elevon produces a Positive Pitch Rate, Negative 
(upwards) Acceleration and the Missile is Steadily Climbing at Higher Altitudes 



 

Figure 2.4 The Missile is excited by a Wind-Gust from below that causes Negative pitch and rate and Z-acceleration. The 
Elevon Responds with Negative Deflection to Counteract the Negative Pitch Rate 

  



2.3 Stability Analysis 

The system stability is analyzed in the frequency domain by calculating the Nichols plot using the 
open-loop Simulink model “Open_Pitch.mdl” shown in Figure 2.5. The script file “frequ.m” calculates 
the frequency response across the opened loop. The model includes the first order actuator and a 
low-pass filter. The loop is broken between the low-pass filter output and the actuator input. Figure 
2.6 shows the control system’s stability margin. 

 

Figure 2.5 Open-Loop Model “Open_Pitch.mdl” for Pitch Stability Analysis 

  

Figure 2.6 The Nichols Plot Shows that the LQR Control System has Plenty of Stability Margin in Pitch. The System also 
has a Short-Period Mode at 3.85 (rad/sec) 



3.1 Lateral Control Design and Analysis 

The input file for the coupled Roll and Yaw axes design is “Later_LQR_Des.Inp” located in subdirectory 
“Control Analysis\LQG\Examples\Missile Control Design\Lateral LQR”. It contains several Flixan 
datasets that generate plant models and perform steady-state LQR state-feedback control design. 
They are processed by a batch set located at the top of the file. The batch first retains the control 
weight matrices Qc and Rc from getting erased in systems file “Later_LQR_Des.Qdr”. Then it generates 
the vehicle model “Missile with Wing, Mach: 2.5, Qbar: 1220” that includes both pitch and lateral 
dynamics. The initial lateral design model is then extracted from the above system and saved as 
“Missile with Wing Lateral Design Model”. It consists of two inputs, Aileron and Rudder deflections in 
(rad), and 5 outputs: roll attitude and rate, yaw attitude and rate and the angle of sideslip in radians. 
A second longitudinal system is also created with title: “Missile with Wing Lateral Analysis Model”. It 
includes a wind-gust velocity input in (feet/sec) and other outputs, and it will be used in simulations. 
The direction of the gust is different than the pitch model. It is now perpendicular to the vehicle x-
axis, and along the –y direction to excite the roll and yaw dynamics, as defined in the vehicle input 
data by the wind azimuth and elevation angles (90⁰ and 90⁰). 

BATCH MODE INSTRUCTIONS ...............                                                              
Batch for Designing Lateral Models and Gains for a Missile with Wing  
! 
! This batch set creates the Design and Analysis models for a 
! Missile with Wing at 2.5 Mach, and performs LQR design.  
! The Missile has a fixed Thrust and it is controlled by 3 Aerosurfaces 
! 
!                  Control Design Matrices 
Retain Matrix    : State Weight Matrix Qc (9x9)  
Retain Matrix    : Control Weight Matrix Rc (2x2)  
! 
Flight Vehicle   : Missile with Wing, Mach: 2.5, Qbar: 1220    
System Modificat : Missile with Wing Lateral Design Model   
System Modificat : Missile with Wing Lateral Analysis Model    
Transf-Functions : Actuator: 34/(s+34) 
Transf-Functions : Integrator     
System Connection: Augmented Lateral Design Model 
System Modificat : Augmented Lateral Design Model-2 
LQR Control Des  : LQR Control Design for Augmented Lateral Design Model 
! 
!                  Convert to Matlab 
To Matlab Format : Missile with Wing Lateral Analysis Model  
To Matlab Format : LQR State-Feedback Control for Augmented Lateral Design Model 
------------------------------------------------------------------------------------------- 
  



FLIGHT VEHICLE INPUT DATA ...... 
Missile with Wing, Mach: 2.5, Qbar: 1220 
! Rigid-Body Missile controlled by 3 aerosurfaces. The engine has fixed thrust 
! and does not gimbal 
Body Axes Output, Attitude=Euler Angles, NoWind Alpha 
  
Vehicle Mass (lb-sec^2/ft), Gravity Accelerat. (g) (ft/sec^2), Earth Radius (Re) (ft)    :   1219.1, 32.07,  
Moments and products of Inertias Ixx, Iyy, Izz, Ixy, Ixz, Iyz, in (lb-sec^2-ft)          :   0.4063E+04 0.1654E+06  
CG location with respect to the Vehicle Reference Point, Xcg, Ycg, Zcg, in (feet)        :   26.19, 0.0,  -0.15 
Vehicle Mach Number, Velocity Vo (ft/sec), Dynamic Pressure (psf), Altitude (feet)       :   2.5, 2427.4,1220.6,        
Inertial Acceleration Vo_dot, Sensed Body Axes Accelerations Ax,Ay,Az (ft/sec^2)         :   60.0, 60.0, 0.0, 10.5 
Angles of Attack and Sideslip (deg), alpha, beta rates (deg/sec)                         :   10.5, 0.0, 0.0, 0.0     
Vehicle Attitude Euler Angles, Phi_o,Thet_o,Psi_o (deg), Body Rates Po,Qo,Ro (deg/sec)   :   0.0,39.6,0.0, 0.0, 0.132,   
Wind Gust Vel wrt Vehi (Azim & Elev) angles (deg), or Force(lb), Torque(ft-lb), locat:xyz:   Gust  90.0  90.0     
Surface Reference Area (feet^2), Mean Aerodynamic Chord (ft), Wing Span in (feet)        :   145.4, 22.0, 22.0     
Aero Moment Reference Center (Xmrc,Ymrc,Zmrc) Location in (ft), {Partial_rho/ Partial_H} :   26.19, 0.0, -0.238, 0.0  
Aero Force Coef/Deriv (1/deg), Along -X, {Cao,Ca_alf,PCa/PV,PCa/Ph,Ca_alfdot,Ca_q,Ca_bet}:   0.1, 0.002, 0.0, 0.0,  
Aero Force Coeffic/Derivat (1/deg), Along Y, {Cyo,Cy_bet,Cy_r,Cy_alf,Cy_p,Cy_betdot,Cy_V}:   0.0, -0.023, 0.0, 0.0,  
Aero Force Coeff/Deriv (1/deg), Along Z, {Czo,Cz_alf,Cz_q,Cz_bet,PCz/Ph,Cz_alfdot,PCz/PV}:  -0.1, -0.032, 0.0, 0.0,      
Aero Moment Coeffic/Derivat (1/deg), Roll: {Clo, Cl_beta, Cl_betdot, Cl_p, Cl_r, Cl_alfa}:   0.0, -0.0017,0.0,-0.243,    
Aero Moment Coeff/Deriv (1/deg), Pitch: {Cmo,Cm_alfa,Cm_alfdot,Cm_bet,Cm_q,PCm/PV,PCm/Ph}:  -0.037,-0.011, 0.0,0.0,    
Aero Moment Coeffic/Derivat (1/deg), Yaw : {Cno, Cn_beta, Cn_betdot, Cn_p, Cn_r, Cn_alfa}:   0.0, 5.6e-4, 0.0,0.1388,   
 
Number of Control Surfaces, With or No TWD (Tail-Wags-Dog and Hinge Moment Dynamics) ?   :  3   No TWD 
 
Control Surface No:  1                                                                     Elevator     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0  30.0 -30.0 0.000         
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0  0.0  0.0  0.0           
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0  0.0  0.0  0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0  0.0  0.0  
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00003 -0.0 -0.0087, 0.00   
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}:  0.0 -0.0072 0.0  0.0        
 
Control Surface No:  2                                                                     Aileron     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0 30.0  -30.0 0.0       
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0   0.0  0.0  0.0           
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0  0.0   0.0    0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0    0.0     0.0   
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00003 0.0011 0.0  0.0        
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}: -6.54e-4 0.0  -0.0014  0.0       
 
Control Surface No:  3                                                                     Rudder     
Trim Angle, Max/Min Deflection Angles from Trim, Hinge Line Angles: phi_h, lamda_h  (deg):  0.0 30.0 -30.0 0.000         
Surface Mass, Inertia about Hinge, Moment Arm (Hinge to Surface CG), Surface Chord, Area :  0.0 0.0 0.0 0.0  0.0      
Hinge Moment Derivatives (1/deg), { Chm_Alpha, Chm_Beta, Chm_Delta, Chm_Mach }           :  0.0 0.0 0.0 0.0    
Location of the Hinge Line Center with respect to Vehicle Reference (feet), {Xcs,Ycs,Zcs}:  0.0 0.0 0.0  
Forces (-x,y,z) due to Deflect. and Rates {Ca_del,Cy_del,Cz_del, Ca_deld,Cy_deld,Cz_deld}:  0.00001 0.0034 0.0 0.0        
Moments due to Deflections and Rates {Cl_del,Cm_del,Cn_del,Cl_deldot,Cm_deldot,Cn_deldot}:  5.9456e-4 0.0 -0.0035         
 
Number of Bending Modes                                                                  :  0 
---------------------------------------------------------------------------------------------------------------------- 
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Missile with Wing Lateral Design Model                                                                                             
Missile with Wing, Mach: 2.5, Qbar: 1220                  
! The initial Lateral Design system is extracted from the coupled RB system above      
!                                 
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract Inputs :   2   3    
Extract States :   1   2   5   6   8 
Extract Outputs:   1   2   5   6   8   
------------------------------------------------------------------------------------------------------- 
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Missile with Wing Lateral Analysis Model                                                                                             
Missile with Wing, Mach: 2.5, Qbar: 1220                 
! The lateral Analysis/ Simulation system is extracted from the coupled RB system above      
!                                 
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract Inputs :   2   3   4 
Extract States :   1   2   5   6   8 
Extract Outputs:   1   2   5   6   8  11  13 
------------------------------------------------------------------------------------------------------- 

The system modification datasets extract the lateral variables from the coupled system “Missile with 
Wing, Mach: 2.5, Qbar: 1220” and save them in file “Later_LQR_Des.Qdr” as separate systems.  

  



In the lateral direction we would like to command and track the heading direction angle (ξ). The 
heading angle can be controlled by a coordinated roll and yaw command that can be achieved with 
good roll and yaw attitude tracking performance. We introduce therefore two additional states in the 
design model: φ-integral and ψ-integral because we want to be able to command them 
independently in order to minimize the β-transients. It is also good idea to include simple aileron and 
rudder actuator models in the synthesis model because it introduces more plant information in the 
design and makes the control system more efficient with less phase-lag. We introduce therefore two 
additional states in the state-vector: δaileron and δrudder, a total of 9 states. This will create a (2x9) state-
feedback LQR gain matrix.  

 

Figure 3.1 Augmented Lateral Design Plant for LQR Control Design 

Figure 3.1 shows the augmented plant for the Roll/ Yaw LQR control design. The following 
interconnection dataset combines the 5 subsystems together and generates the augmented system, 
which is: “Augmented Lateral Design Model”. The sequence of the states, however, is not the same as 
the outputs sequence and it is modified by reordering the states to “Augmented Lateral Design 
Model-2” which conveniently makes the C matrix equal to the identity I9. 

  



INTERCONNECTION OF SYSTEMS ..... 
Augmented Lateral Design Model 
! Create a 9-State Augmented Model that Includes Phi-integr, Psi-integr,  
! Aileron and Rudder deflections in the state vector for Lateral Control Design 
! 
Titles of Systems to be Combined    
Title 1 Actuator: 34/(s+34) 
Title 2 Actuator: 34/(s+34) 
Title 3 Missile with Wing Lateral Design Model  
Title 4 Integrator 
Title 5 Integrator 
SYSTEM INPUTS TO SUBSYSTEM  1                                                          to Ailern Actuator 
System Input  1 to Subsystem  1, Input  1, Gain= 1.0                                   Delta-ailer Command 
.............................................................................. 
SYSTEM INPUTS TO SUBSYSTEM  2                                                          to Rudder Actuator 
System Input  2 to Subsystem  2, Input  1, Gain= 1.0                                   Delta-ruddr Command 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  3                                                       Vehicle Plant 
System Output  1 from Subsystem  3, Output  1, Gain= 1.0                               Phi 
System Output  2 from Subsystem  3, Output  2, Gain= 1.0                               p - roll rate 
System Output  3 from Subsystem  3, Output  3, Gain= 1.0                               Psi 
System Output  4 from Subsystem  3, Output  4, Gain= 1.0                               r - yaw rate 
System Output  5 from Subsystem  3, Output  5, Gain= 1.0                               Beta 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  4                                                       Integrator 
System Output  6 from Subsystem  4, Output  1, Gain= 1.0                               Phi-integral 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  5                                                       Integrator 
System Output  7 from Subsystem  5, Output  1, Gain= 1.0                               Psi-integral 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  1                                                       Actuator 
System Output  8 from Subsystem  1, Output  1, Gain= 0.0294118                         delta-aileron 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  2                                                       Actuator 
System Output  9 from Subsystem  2, Output  1, Gain= 0.0294118                         delta-rudder 
.............................................................................. 
SUBSYSTEM NO  1 GOES TO SUBSYSTEM NO  3                                                Ailer-Actuat to Vehicle                                          
Subsystem  1, Output  1 to Subsystem  3, Input  1, Gain=   1.0000                      Aileron-deflect           
...................................................................... 
SUBSYSTEM NO  2 GOES TO SUBSYSTEM NO  3                                                Ruddr-Actuat to Vehicle                                          
Subsystem  2, Output  1 to Subsystem  3, Input  2, Gain=   1.0000                      Rudder-deflect           
...................................................................... 
SUBSYSTEM NO  3 GOES TO SUBSYSTEM NO  4                                                Vehicle to Integrator-4                                     
Subsystem  3, Output  1 to Subsystem  4, Input  1, Gain=   1.0000                      Phi  
...................................................................... 
SUBSYSTEM NO  3 GOES TO SUBSYSTEM NO  5                                                Vehicle to Integrator-4                                     
Subsystem  3, Output  3 to Subsystem  5, Input  1, Gain=   1.0000                      Psi  
...................................................................... 
Definitions of Inputs  =   2 
Aileron Deflection Command (delta) rad 
Rudder  Deflection Command (delta) rad 
 
Definitions of Outputs =   9 
Roll Attitude, Phi (rad) 
Roll Rate, p (rad/sec) 
Yaw  Attitude, Psi (rad) 
Yaw  Rate, r (rad/sec) 
Angle of Sideslip beta (rad) 
Phi-Integral (rad-sec) 
Psi-Integral (rad-sec) 
Aileron Deflection, delta-ailer (rad) 
Rudder Deflection, delta-rudder (rad) 
------------------------------------------------------------------------------- 

  



SYSTEM OF TRANSFER FUNCTIONS ... 
Actuator: 34/(s+34) 
! First order Actuator 34 (rad/sec) Bandwidth 
Continuous 
TF. Block #  1 34/(s+34)                                         Order of Numer, Denom=  0  1 
Numer 0.0         34.0 
Denom 1.0         34.0 
------------------------------------------------------------------------------- 
Block #, from Input #, Gain 
  1  1    1.00000 
........................... 
Outpt #, from Block #, Gain 
  1  1    1.00000 
........................... 
Definitions of Inputs  =   1 
Delta Command                                                                 
  
Definitions of Outputs =   1 
Delta Out                                                 
------------------------------------------------------------------------------- 
 
SYSTEM OF TRANSFER FUNCTIONS ... 
Integrator 
Continuous 
TF. Block #  1  (1/s)                                           Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
------------------------------------------------------------------------------- 
Block #, from Input #, Gain 
  1  1    1.00000 
........................... 
Outpt #, from Block #, Gain 
  1  1    1.00000 
------------------------------------------------------------------------------- 
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Augmented Lateral Design Model-2 
Augmented Lateral Design Model 
! Rearange the Order of States to be the same as the Outputs 
! Makes C=Identity 
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract States :   3   4   5   6   7   8   9   1   2 
Extract Outputs:   1   2   3   4   5   6   7   8   9 
------------------------------------------------------------------------------------------- 

 
  



The dataset “LQR Control Design for Augmented Lateral Design Model” performs the LQR control 
design using the plant “Augmented Lateral Design Model-2”. It uses the C matrix for criteria which is 
Identity and the (9x9) weight matrix Qc penalizes the individual states. The (2x2) matrix Rc penalizes 
the two controls, which are: aileron and rudder activity. The weight matrices are already set in the 
systems file. The LQR program generates the (2x9) state-feedback matrix Kpr that stabilizes the plant 
by closing the control loop between the state-vector and the two aerosurface inputs. The gain matrix 
is also saved in the systems file under the title “LQR State-Feedback Control for Augmented Lateral 
Design Model”. The matrix Kpr and the lateral analysis model are also saved in Matlab format as 
“Kpr.mat” and “vehi_lateral.m” respectively for further analysis. 

 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN                                                                                                                                                 
LQR Control Design for Augmented Lateral Design Model     
Plant Model Used to Design the Control System:  Augmented Lateral Design Model-2                                                                                                              
Criteria Optimization Output is Matrix C                                                                                                                                                                 
State Penalty Weight (Qc) is Matrix:   Qc9      State Weight Matrix Qc (9x9)                                                                                                                  
Control Penalty Weight (Rc) is Matrix: Rc2      Control Weight Matrix Rc (2x2)                                                                                                                
Continuous LQR Solution Using Laub Method                                                                                                                                                                
LQR State-Feedback Control Gain Matrix Kpr      LQR State-Feedback Control for Augmented Lateral Design Model                                                                         
------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Control for Augmented Lateral Design Model 
Matrix Kpr 
------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Missile with Wing Lateral Analysis Model 
System 
Vehi_lateral.m 
------------------------------------------------------------------------------------------- 
END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END-END 

 
 
3.2 Lateral Simulation 

The closed-loop simulation model “Lateral_Sim.mdl” in Figure 3.2 is located in folder “Control 
Analysis\LQG\ Examples\Missile Control Design\Lateral LQR” and it is used to analyze the system’s 
response to gusts and to heading commands. The 9-state-feedback loop is closed via matrix Kpr which 
includes: φ-integral, ψ-integral, δaileron and δrudder feedback in addition to the feedback from the 
original vehicle states: (φ, p, ψ, r, β). The heading direction is ξ=ψ+β. The heading error is converted 
into a simultaneously applied roll and yaw attitude command which makes the vehicle to perform a 
coordinated roll/ yaw turn with minimal β-transient. 

In Figure 3.3 the vehicle is commanded to perform a 10⁰ increment in ξ which is achieved by a 
coordinated roll and yaw command to minimize the β-transients which are undesirable at high Qbar. 
In Figure 3.4 the missile is excited by a lateral wind-gust velocity impulse along the –y direction and it 
responds by rotating the aerosurfaces. 



 

Figure 3.2 Roll and Yaw Axes Closed-Loop Simulation Model “Lateral_Sim.mdl” 

  



 

 

Figure 3.3 Missile Responds to 10⁰ Heading Command. Performs Coordinated Roll/ Yaw Maneuver (mostly roll) to 
Change its Heading. Beta Transient is minimized by the Coordinated Roll/ Yaw Turn 

  



 
Figure 3.4 Missile is excited by Lateral Wind-Gust from the right side, along –Y, causing –Y Acceleration. It also causes 
Negative Roll and Positive Yaw due to the Vertical Stabilizer. Beta is Initially Negative because it does not see the Wind 
due to (NoWind Alpha/ Beta) Definition in the Data. The aileron and Rudder accordingly respond to counteract the 
Vehicle Roll and Yaw Rates 



 
3.3 Roll/ Yaw Stability Analysis 

The system stability is analyzed in the frequency domain by calculating the Nichols plot from the 
open-loop Simulink model “Open_Lateral.mdl” shown in Figure 3.5. The script file “frequ.m” 
calculates the frequency response across one of the loops, the one which is opened while the other 
loop is closed. The aileron is opened and the rudder is closed in this case to analyze roll axis stability. 
The model is modified to check the yaw loop stability by opening the rudder and closing the aileron 
loops. The model includes the two actuators and low-pass filters. The loop is broken between the 
low-pass filter output and the corresponding actuator input. Figure 3.6 shows the LQR control 
system’s stability in the Roll and Yaw directions. 

 

Figure 3.5 Open-Loop Model “Open_Lateral.mdl” used for Roll and Yaw Stability Analysis 



 

Figure 3.6 Nichols Plots Showing Stability of the LQR Control System in the Roll and Yaw Axes. The System also has a 
Short-Period Modes at 1.2 and 1.4 (rad/sec) 
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In this example we design a control system for a large and flexible Space Station that is in orbit around 
the earth. The Space Station consists of a truss structure with some attached modules for the crew, 
equipment, experiments, etc. which are located near the center of the structure. The attitude control 
system uses reaction control jets (RCS) and control moment gyros (CMG) but in this example we will 
examine only CMG control and design a system that stabilizes the Station attitude and manages the 
CMG momentum from saturating. The Space Station orbit is circular and its attitude is almost constant 
relative to the Local Vertical Local Horizontal (LVLH) frame. The LVLH x-axis is in the direction of 
the velocity vector, the z-axis is pointing towards the earth center and the y-axis towards the right solar 
array.  
 
The Attitude Control System (ACS) has different modes of operation and one of the control modes is 
the TEA seeking mode where the spacecraft attitude converges to one of the Torque Equilibrium 
Attitudes (TEA). This happens when the ACS balances the average aerodynamic torques with the 
gravity gradient torques. The CMGs are considered as a cluster located near the center and not 
modeled individually. They are momentum exchange devices that have limited torque and momentum. 
Momentum is the integral of torque, that is, they can only supply torque for a limited time before they 
saturate and when they do they require momentum desaturation. Momentum dump is achieved either 
by firing RCS jets or by applying gravity gradient torques. The ACS manages the CMG momentum by 
positioning the spacecraft attitude at the TEA, and therefore, without firing the RCS jets. When 
operating in this mode the Station converges to the average TEA and avoids secular CMG momentum 
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build up. When the momentum begins to grow in a certain direction due to external disturbances, the 
ACS changes the attitude in the direction that reduces momentum.  
 
The Station has a horizontal boom with two rotating solar arrays which are always pointing towards 
the sun, completing, therefore, one rotation per orbit relative to the spacecraft. The aerodynamic 
disturbances cause the CMG momentum to cycle but the control system prevents it from reaching 
saturation. The aerodynamic disturbances consist of steady torques and also cyclic components that 
excite the spacecraft attitude to oscillations. There are two frequency components associated with the 
cyclic disturbance torques: one is at orbital rate (ωo) due to the difference in atmospheric density 
between the sunny and the dark sides of the earth, and the second component is at twice the orbital rate 
(2ωo) caused by drag variation due to the solar arrays rotation. In this mode of operation the function 
of the CMG control system is not to maneuver the Space Station attitude but to stabilize it at the TEA 
and to attenuate the attitude oscillations which are caused by cyclic aerodynamic disturbances.  
 
The purpose of this example is to familiarize the analyst with the Flixan program, create rigid and 
flexible spacecraft models and use them for control design. We will develop linear and non-linear rigid 
and flexible spacecraft models, design LQR state-feedback for attitude control and momentum 
management. Since the spacecraft is stabilized in the LVLH frame the model attitude and rates is 
calculated in the LVLH frame. We will also analyze the system’s stability and performance by using 
simulations and frequency response analysis.  
 
1. Dynamic Model 
 
The linear dynamic model in Equation 1 calculates the spacecraft attitude, rate and CMG momentum 
relative to the LVLH frame. The linearized gravity gradient torque is also included in the model. It is a 
function of attitude (φ,θ,ψ) and therefore it can be used to regulate the CMG momentum by adjusting 
the station attitude. The spacecraft states are: LVLH attitude, LVLH rates, and CMG momentum in 
body axes. The CMG momentum integral is also included to help bound the CMG momentum. The 
inputs are the CMG control torques Tc and external disturbances Td. It also includes the linearized 
gravity gradient dynamics which are functions of the LVLH Euler angles. 
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Equation 1 Linearized Spacecraft Dynamic Equations with Attitude in the LVLH frame 
 
2. Design Concepts  
 
At the torque equilibrium attitude (TEA) the CMG momentum is cyclic but it does not diverge to 
saturation. We can, therefore, design a control system that converges the Space Station attitude to the 
TEA, which is a stable position because the average aerodynamic torque balances with the average 
gravity gradient torque. This is accomplished by applying feedback from the CMG momentum to 
prevent it from diverging and by this process the system attitude converges to the TEA. The LQR 
control method will be used to design the state-feedback gain that stabilizes the coupled dynamic 
system. It optimizes a performance index that is defined by the state and control weight matrices Qc 
and Rc. The LQR method requires a linear dynamic model to synthesize the controller and the Flixan 
design model described in Equation 1 will be used as a synthesis model. The state feedback control 
law, therefore, stabilizes not only the attitude but also the CMG momentum by keeping it oscillating 
around zero. It prevents it from diverging to saturation and as a result the spacecraft attitude converges 
to the TEA. The CMG momentum, however, is not unstable but it is cycling because it responds to the 
cyclic aerodynamic disturbances. This is a continuous momentum desaturation method which is very 
attractive because it does not require RCS propellant. It adjusts the spacecraft attitude and uses gravity 
gradient to prevent the CMG momentum from building up. It relies on sufficient knowledge of the 
vehicle mass properties for the derivation of the control gains.  
 
In the following sections will present two designs: a simple state-feedback design, and a more complex 
design that includes disturbance attenuation filters. We will analyze both designs and compare results.  
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3. Simple Design without Filters 
 
We begin with a preliminary state-feedback design that is based on a dynamic model derived from 
Equation 1. We will use Flixan to create the rigid and flexible spacecraft models, design the control 
system using LQR, and analyze stability.  
 
3.1 Flixan Models 
 
The files for this analysis are in directory: “Flixan\Control Analysis\LQG\Examples\Space-Station w 
CMG2\Design-1”. The Space Station parameters are defined in the input file “Space_Station.Inp” 
which includes two flight vehicle datasets: a rigid-body “Space Station with Double-Gimbal CMG 
Array (Rigid)”, and a flexible model with 34 structural modes “Space Station with Double-Gimbal 
CMG Array (Flex)”. The modes are already selected and scaled and they are located in dataset “Space 
Station with Double-Gimbal CMG Array, 34 Flex Modes”. The “LVLH Attitude & Rate” flag is 
included in the flags line that defines the output attitude and rate relative to the LVLH frame. It uses 
the -0.063 (rad/sec) pitch rate which is equal to the orbital rate ω0 for the transformation. A batch set is 
included at the top of the input file with title “Batch for Large Flexible Space Station”. It is shown 
below and it is used for processing the entire input file fast. 
 
BATCH MODE INSTRUCTIONS ............... 
Batch for Large Flexible Space Station                                                                  
! This batch set creates a model for a Space Station that is  
! controlled by an array of double-gimbal CMGs. Two models 
! are created, a rigid-body model and a flexible model using the  
! attached modal data. The design model is extracted from Rigid Vehicle 
! and the plant state is transformed so that it is equal to the Output, C=I 
! 
Retain Matrix    : State Weight Matrix Qc (12x12)                                                                         
Retain Matrix    : Control Weight Matrix Rc (3x3)                                                                        
! 
Flight Vehicle   : Space Station with Double-Gimbal CMG Array (Rigid)                                                                                             
Flight Vehicle   : Space Station with Double-Gimbal CMG Array (Flex)  
System Modificat : Space Station with Double-Gimbal CMG Array (Design Plant)       
System Modificat : Space Station with Double-Gimbal CMG Array (LVLH Plant)                                                                                       
Transf-Function  : 3 Integrators 
System Connection: Augmented Design Plant   
LQR Control Des  : LQR Control Design for Augmented Space Station Model    
! 
To Matlab Format : Space Station with Double-Gimbal CMG Array (Rigid)                                                                                            
To Matlab Format : Space Station with Double-Gimbal CMG Array (Flex)                                                                                             
To Matlab Format : Space Station with Double-Gimbal CMG Array (Design Plant)   
To Matlab Format : Space Station with Double-Gimbal CMG Array (LVLH Plant)  
To Matlab Format : Augmented Design Plant  
To Matlab Format : LQR State-Feedback Gain for Augmented Design Plant  
------------------------------------------------------------------------------------------------------- 
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FLIGHT VEHICLE INPUT DATA ...... 
Space Station with Double-Gimbal CMG Array (Rigid) 
! 
! The Space Station state-space model is created using the vehicle modeling program. 
! The model uses an array of double-gimbal control moment gyros, 3 rate  
! gyros, 3 attitude sensors, and 4 accelerometers. The Station is initialized at the  
! Local Vertical Local Horizontal (LVLH) attitude and it has a negative pitch rate  
! -0.063 radians/sec which is equal to the orbital rate. The vehicle rates are with  
! respect to the LVLH frame. A constant bias torque 7.40153 (ft-lb) is applied 
! in the direction (-0.1969, 0.5963, 0.7781) to represent the steady-state gyroscopic  
! and gravity-gradient torques due to the constant pitch rate 
! 
Body Axes Output, LVLH Attitude & Rate 
  
Vehicle Mass (lb-sec^2/ft), Gravity Accelerat. (g) (ft/sec^2), Earth Radius (Re) (ft)    :   6200.0   32.174        
Moments and products of Inertias Ixx, Iyy, Izz, Ixy, Ixz, Iyz, in (lb-sec^2-ft)          :   0.1194e+9  0.404e+8    
CG location with respect to the Vehicle Reference Point, Xcg, Ycg, Zcg, in (feet)        :   0.0          0.0           
Vehicle Mach Number, Velocity Vo (ft/sec), Dynamic Pressure (psf), Altitude (feet)       :   0.0          25500.0       
Inertial Acceleration Vo_dot, Sensed Body Axes Accelerations Ax,Ay,Az (ft/sec^2)         :   0.0          0.0           
Angles of Attack and Sideslip (deg), alpha, beta rates (deg/sec)                         :   0.0          0.0           
Vehicle Attitude Euler Angles, Phi_o,Thet_o,Psi_o (deg), Body Rates Po,Qo,Ro (deg/sec)   :   0.0000       0.000         
W-Gust Azim & Elev angles (deg), or Torque/Force direction (x,y,z), Force Locat (x,y,z)  :   Torque    0.1969  -0.5963     
Surface Reference Area (feet^2), Mean Aerodynamic Chord (ft), Wing Span in (feet)        :   0.0    1.0   1.0   
Aero Moment Reference Center (Xmrc,Ymrc,Zmrc) Location in (ft), {Partial_rho/ Partial_H} :   0.0          0.0           
Aero Force Coef/Deriv (1/deg), Along -X, {Cao,Ca_alf,PCa/PV,PCa/Ph,Ca_alfdot,Ca_q,Ca_bet}:   0.0          0.0           
Aero Force Coeffic/Derivat (1/deg), Along Y, {Cyo,Cy_bet,Cy_r,Cy_alf,Cy_p,Cy_betdot,Cy_V}:   0.0         -0.0           
Aero Force Coeff/Deriv (1/deg), Along Z, {Czo,Cz_alf,Cz_q,Cz_bet,PCz/Ph,Cz_alfdot,PCz/PV}:   0.0         -0.0           
Aero Moment Coeffic/Derivat (1/deg), Roll: {Clo, Cl_beta, Cl_betdot, Cl_p, Cl_r, Cl_alfa}:   0.0         -0.0           
Aero Moment Coeff/Deriv (1/deg), Pitch: {Cmo,Cm_alfa,Cm_alfdot,Cm_bet,Cm_q,PCm/PV,PCm/Ph}:   0.0         -0.0           
Aero Moment Coeffic/Derivat (1/deg), Yaw : {Cno, Cn_beta, Cn_betdot, Cn_p, Cn_r, Cn_alfa}:   0.0          0.0           
 
Number of External Torques on the Vehicle                                                :  3 
Torque No  1  Direction (x, y, z)                                                        :  1.0       0.0       0.0 
Torque No  2  Direction (x, y, z)                                                        :  0.0       1.0       0.0 
Torque No  3  Direction (x, y, z)                                                        :  0.0       0.0       1.0 
 
Double Gimbal Control Moment Gyro System  (3-axes), Initial Momentum (x,y,z) (ft-lb-sec) :  Yes    0.0    0.0   0.0 
 
Number of Gyros, (Attitude and Rate)                                                     :  6 
Gyro No  1 Axis:(Pitch,Yaw,Roll), (Attitude, Rate, Accelerat), Sensor Locat,   Node 2    :  Roll   Rate  0.0   82.0       
Gyro No  2 Axis:(Pitch,Yaw,Roll), (Attitude, Rate, Accelerat), Sensor Locat,   Node 2    :  Pitch  Rate  0.0   82.0       
Gyro No  3 Axis:(Pitch,Yaw,Roll), (Attitude, Rate, Accelerat), Sensor Locat,   Node 2    :  Yaw    Rate  0.0   82.0       
Gyro No  4 Axis:(Pitch,Yaw,Roll), (Attitude, Rate, Accelerat), Sensor Locat,   Node 2    :  Roll   Attitu  0.0 82.0       
Gyro No  5 Axis:(Pitch,Yaw,Roll), (Attitude, Rate, Accelerat), Sensor Locat,   Node 2    :  Pitch  Attitu  0.0 82.0       
Gyro No  6 Axis:(Pitch,Yaw,Roll), (Attitude, Rate, Accelerat), Sensor Locat,   Node 2    :  Yaw    Attitu  0.0 82.0       
 
Number of Accelerometers, Along Axes: (x,y,z)                                            :  4 
Acceleromet No  1 Axis:(X,Y,Z), (Position, Velocity, Acceleration), Sensor Loc, Node 2   :  X-axis Accelerat.  0.0  
Acceleromet No  2 Axis:(X,Y,Z), (Position, Velocity, Acceleration), Sensor Loc, Node 2   :  Z-axis Accelerat.  0.0       
Acceleromet No  3 Axis:(X,Y,Z), (Position, Velocity, Acceleration), Sensor Loc, Node 4   :  X-axis Accelerat.  0.0      
Acceleromet No  4 Axis:(X,Y,Z), (Position, Velocity, Acceleration), Sensor Loc, Node 4   :  Z-axis Accelerat.  0.0      
 
Number of Bending Modes                                                                  :  0 
------------------------------------------------------------------------------------------------------- 
 

The input file includes a system modification dataset “Space Station with Double-Gimbal CMG Array 
(Design Plant)” which creates the control design model by extracting a reduced number of inputs, 
states, and outputs from the rigid model. The systems and matrices created are saved in file 
“Space_Station.Qdr” under the same title.  
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Space Station with Double-Gimbal CMG Array (Design Plant)                                        
Space Station with Double-Gimbal CMG Array (Rigid)                 
! Create the Station Design Model by Reducing the Rigid-Body Model      
! Inputs are the CMG Control Torques 
! Outputs are: LVLH attitude and rates, and CMG Momentum 
!                            
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract Inputs :   1   2   3 
Extract States :   1   3   5   2   4   6  11  12  13 
Extract Outputs:   1   3   5   2   4   6  16  17  18 
------------------------------------------------------------------------------------------------------- 
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An additional transformation is needed because although the design plant attitude and rates are in the 
LVLH frame, some of the states, however, are still in the body frame. Since we assume that the state-
feedback measurements are in the LVLH we want our design model state to be also in the LVLH 
frame. This transformation makes the design plant states to be equal to the outputs which are already 
LVLH attitudes and rates, and the output matrix C=Identity. The dataset below performs this 
transformation. Its title is “Space Station with Double-Gimbal CMG Array (LVLH Plant)”. Notice that 
the transformation requires the design plant matric C to be square and observable. 
 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Space Station with Double-Gimbal CMG Array (LVLH Plant)                                        
Space Station with Double-Gimbal CMG Array (Design Plant)               
! Transform the design plant and make the States equal to the Outputs 
SYSTEM TRANSFORMATION, STATES EQUAL TO OUTPUTS 
------------------------------------------------------------------------------------------------------- 
 
SYSTEM OF TRANSFER FUNCTIONS ... 
3 Integrators 
! Used to calculate the CMG Momentum Integral for the LQR Optimization 
Continuous 
TF. Block #  1  Integrator x                                     Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
TF. Block #  2  Integrator y                                     Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
TF. Block #  3  Integrator z                                     Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
...................................................... 
Block #, from Input #, Gain 
      1             1       1.0 
      2             2       1.0 
      3             3       1.0 
........................... 
Outpt #, from Block #, Gain 
      1             1       1.0 
      2             2       1.0 
      3             3       1.0 
........................... 
Definitions of Inputs  =   3 
CMG Momentum-X  
CMG Momentum-Y 
CMG Momentum-Z 
  
Definitions of Outputs =   3 
CMG Momentum-X Integral 
CMG Momentum-Y Integral 
CMG Momentum-Z Integral 
------------------------------------------------------------------------------ 

 
The design model is finally augmented by including 3 additional states, the (x, y, z) momentum 
integral because it is not sufficient to only bound the momentum from diverging but we also want it to 
be cycling near zero without a bias. The 3 momentum integrators are implemented as 3 transfer 
functions using the transfer functions combination utility. It creates the state-space system “3 
Integrators”, shown above. We must also create the “Augmented Design Plant” by combining the 
LVLH design plant with the 3 additional (x, y, z) momentum integral states using the Flixan systems 
combination utility, see Fig.2.  
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INTERCONNECTION OF SYSTEMS ..... 
Augmented Design Plant 
! Augment the Design Plant by including the Momentum Integral and the  
! Oscillation Filters 
Titles of Systems to be Combined          (Found in File Comb_tst.Qdr) 
Title 1 Space Station with Double-Gimbal CMG Array (LVLH Plant)   
Title 2 3 Integrators 
SYSTEM INPUTS TO SUBSYSTEM  1 
Via Matrix +I3                                                                           3 CMG Control Torques 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  1                                                         9 Plant States 
System Output  1 from Subsystem  1, Output  1, Gain= 1.0                                 3 LVLH Attitudes 
System Output  2 from Subsystem  1, Output  2, Gain= 1.0 
System Output  3 from Subsystem  1, Output  3, Gain= 1.0 
System Output  4 from Subsystem  1, Output  4, Gain= 1.0                                 3 LVLH Rates 
System Output  5 from Subsystem  1, Output  5, Gain= 1.0 
System Output  6 from Subsystem  1, Output  6, Gain= 1.0 
System Output  7 from Subsystem  1, Output  7, Gain= 1.0                                 3 CMG Momentum 
System Output  8 from Subsystem  1, Output  8, Gain= 1.0 
System Output  9 from Subsystem  1, Output  9, Gain= 1.0 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  2                                                         3 Momentum Integrals 
System Output 10 from Subsystem  2, Output  1, Gain= 1.0                                 H-integr-X 
System Output 11 from Subsystem  2, Output  2, Gain= 1.0                                 H-integr-Y 
System Output 12 from Subsystem  2, Output  3, Gain= 1.0                                 H-integr-Z 
.............................................................................. 
SUBSYSTEM NO  1 GOES TO SUBSYSTEM NO  2                                                  to Momentum Integrat 
Subsystem  1, Output  7 to Subsystem  2, Input  1, Gain=  1.0                            CMG Momentm-X 
Subsystem  1, Output  8 to Subsystem  2, Input  2, Gain=  1.0                            CMG Momentm-Y 
Subsystem  1, Output  9 to Subsystem  2, Input  3, Gain=  1.0                            CMG Momentm-Z 
...................................................................... 
Definitions of Inputs  =   3 
Roll CMG Momentum (ft-lb) 
Ptch CMG Momentum (ft-lb) 
Yaw  CMG Momentum (ft-lb) 
 
Definitions of Outputs =  12 
Roll Attitude  (phi-LVLH)  (radians)                                             
Pitch Attitude (thet-LVLH) (radians)                                             
Yaw  Attitude  (psi-LVLH)  (radians)                                             
Roll Rate      (p-lvlh)    (rad/sec)                                             
Pitch Rate     (q-lvlh)    (rad/sec)                                             
Yaw  Rate      (r-lvlh)    (rad/sec)                                             
CMG Momentum in X-axis (ft-lb-sec)                          
CMG Momentum in Y-axis (ft-lb-sec)                          
CMG Momentum in Z-axis (ft-lb-sec)   
CMG Momentum Integral X (ft-lb-sec^2)                          
CMG Momentum Integral Y (ft-lb-sec^2)    
CMG Momentum Integral Z (ft-lb-sec^2)    
------------------------------------------------------------------------------- 

 
The final dataset included in the input file is the “LQR Control Design for Augmented Space Station 
Model” which calculates the (3x12) state-feedback matrix Kpqr. The state and control weight matrices 
Qc and Rc are already included in file “Space_Station.Qdr”. The state-feedback matrix Kpqr is also 
saved in file “Space_Station.Qdr” and its title is “LQR State-Feedback Gain for Augmented Design 
Plant”. 
 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN                                                                                                                                                 
LQR Control Design for Augmented Space Station Model                                                                                                                                       
Plant Model Used to Design the Control System from:        Augmented Design Plant                                                                                                              
Criteria Optimization Output is Matrix C                                                                                                                                                                 
State Penalty Weight (Qc) is Matrix:   Qc12                State Weight Matrix Qc (12x12)                                                                                                                 
Control Penalty Weight (Rc) is Matrix: Rc3                 Control Weight Matrix Rc (3x3)                                                                                                                                                             
Continuous LQR Solution Using Assymptotic Method                                                                                                                                                                
LQR State-Feedback Control Gain Matrix Kpqr                LQR State-Feedback Gain for Augmented Design Plant                                 
------------------------------------------------------------------------------------------------------- 
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Six Matlab conversion datasets are also included in “Space_Station.Inp”. They convert the systems and 
matrices in m-file format that can be loaded into Matlab by running the script file start.m. 
 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Space Station with Double-Gimbal CMG Array (Rigid) 
System 
vehicle_rigid 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Space Station with Double-Gimbal CMG Array (Flex) 
System 
vehicle_flex34 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Space Station with Double-Gimbal CMG Array (Design Plant) 
System 
design_plant 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Space Station with Double-Gimbal CMG Array (LVLH Plant) 
System 
lvlh_plant 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Augmented Design Plant 
System 
augm_plant 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Gain for Augmented Design Plant 
Matrix Kpqr 
------------------------------------------------------------------------------------------------------- 

 
[Av, Bv, Cv, Dv]= vehicle_rigid;             % Load the Rigid Vehicle State-Space Model  
[Af, Bf, Cf, Df]= vehicle_flex34;            % Load the Flex  Vehicle State-Space Model  
[Ad, Bd, Cd, Dd]= design_plant;              % Load the Rigid Design Plant Model  
[Al, Bl, Cl, Dl]= lvlh_plant;                % Load the LVLH  Design Plant Model  
[Ag, Bg, Cg, Dg]= augm_plant;                % Load the Augmented Design Plant Model  
load Kpqr -ascii;                            % Load the LQR gains from previous design 
 

The files “vehicle_rigid.m” and “vehicle_flex34.m” are used in simulations. The augmented plant 
“augm_plant.m” can also be used for the LQR design using Matlab. 
 
3.2 LQR Control System Design 
 
The initialization file “start.m” loads the dynamic systems and matrices for the simulation and analysis 
models. In addition to Flixan, the Matlab script file “des.m” is also able to calculate the LQR control 
gains. It is using either the augmented design plant or by linearizing the Simulink model 
“Augm_Vehicle.mdl” shown in Figure 2. Figure 3 shows the rigid and flexible simulation models: 
“Sim_Lin_TEA_Rigid.mdl” and “Sim_Lin_TEA_Flex.mdl”, which are similar. They include the Flixan 
generated systems: “vehicle_rigid.m” and “vehicle_flex34.m” respectively, the second of which 
contains the 34 structural modes. The rate states of these systems have not been transformed to LVLH 
as in the design plant. In the flex simulation model, the rate gyro measurements are body rates and they 
include structural flexibility. A transformation is therefore used, shown in Fig.4, to convert the rate 
signals to LVLH rates for feedback. The transformation requires the LVLH attitude and the orbital rate 
ω0=0.0011 (rad/sec). The model also includes the CMG dynamics implemented as second order 
transfer functions and the aerodynamic disturbance torques in roll, pitch, and yaw. There is also a bias 
torque as shown in Equation 1. 
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% LQR Design for Gravity Gradient Momentum Management -------- 
start; 
[Al, Bl, Cl, Dl]= lvlh_plant;                    % Load the LVLH Design Plant Model  
[Ag, Bg, Cg, Dg]= augm_plant;                    % Load the Augmented Design Plant Model  
[A0,B0,C0,D0]=linmod('Augm_Vehicle');            % Create State-Space system for ... 
sys=ss(A0,B0,C0,D0);                             % Analyze the Augmented System 
sys=ss(Ag,Bg,Cg,Dg);                             % Analyze the Augmented System 
Q0=diag([100,  1.e+6,  100, ...                  % lvlh attitude weights 
         0.1,  0.1,    0.1, ...                  % lvlh rate weights 
         1.e-10, 1.e-11, 1.e-10, ...             % CMG Momentum weights 
         1.e-12, 3.e-14, 1.e-12]);               % CMG Moment-Integral weights 
R0=diag([0.3, 1, 0.1]*1.e-3);                    % CMG Control torque Weights 
[Kpqr,S,E] = lqr(sys,Q0,R0) 
save Kpqr.mat Kpqr -ascii                        % Save the LQR gains in Kpqr.mat 
[A1,B1,C1,D1]=linmod('Simple_Sim'); eig(A1)      % Create State-Space system for ... 
 

 
Figure 2 Augmented 12 State Plant Model used for LQR Design including the Momentum Integral 

 
Figure 3 Rigid and Flex Closed Loop Simulation Models with State-Feedback Kpqr 
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Figure 4 Flexible Spacecraft Subsystem with Body to LVLH Rate Transformation 
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3.3 Simulation Results 
 
We will now use the simulation model “Sim_Lin_TEA_Flex.mdl” to calculate the spacecraft response 
to aerodynamic disturbances. The disturbance torques are shown in Figure 5 and they consists of cyclic 
and steady components. They are included in the Space Station dynamics block, shown in Figure 4. 
There is no attitude command in the system when the Station is operating in this mode. The Space 
Station attitude is initialized at zero, that is, equal to the LVLH attitude, and it simply drifts under the 
influence of the external aerodynamic torques and also the gravity gradient torques which are included 
in the equations of motion.  
 
As the momentum begins to grow the spacecraft changes its attitude, drifting towards torque 
equilibrium (TEA) and it uses gravity-gradient to balance the steady aero moments. The cyclic 
components of the disturbances, however, generate attitude oscillations, mostly in-plane (pitch). The 
state-feedback control stabilizes not only the attitude but also manages the CMG momentum and 
prevents it from diverging. The momentum integral feedback prevents it from being biased, and it is 
eventually cycling around zero because of the disturbances at ω0 and at 2ω0. Notice the control system 
bandwidth cannot be sufficiently opened in order to provide more torque and to reduce the attitude 
oscillations caused by the disturbances. The CMGs have torque and momentum limitations and the 
flex modes can be amplified to instability. In the next section we shall include disturbance 
accommodation filters to further attenuate the attitude oscillations at orbital rate. 
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Figure 5 Spacecraft Response to Disturbances Calculated from Simulink Model “Sim_Lin_TEA_Flex.mdl” 
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3.4 Stability Analysis 
 
The Simulink model “Open_Lin-TEA_Flex.mdl” is used to calculate the frequency responses of the 3 
loops system by opening one loop while keeping the other two closed. The loop is opened at the CMG 
control torque. It is shown in Figure 6 configured for pitch analysis. The Matlab script m-file “freq.m” 
is using this model to calculate the Bode and Nichols plots.  
 
Figures 7, 8 and 9 show the stability analysis results obtained from this model, one loop at a time. 
Structural flexibility becomes an issue if we try to open up the bandwidth too much and we can, 
therefore, offer only limited amount of disturbance attenuation. 

 
Figure 6 Simulink Model “Open_Lin_TEA_Flex.mdl” Used to Calculate the Frequency Responses and Analyze 
Stability 
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Figure 7 Roll Axis Bode and Nichols Plots showing Flexibility and Stability Margins 
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Figure 8 Pitch Axis Bode and Nichols Plots showing Flexibility and Stability Margins 
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Figure 9 Yaw Axis Bode and Nichols Plots showing Flexibility and Stability Margins 
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4. Design with Disturbance Attenuation Filters 
 
The cyclic disturbances occurring at orbital rate are big enough to produce sizeable attitude oscillations 
at orbital frequency ωo, especially in pitch. Since we know the exact frequency of the disturbance, a 
more efficient design approach is to attenuate its effect on the attitude by introducing a resonance in 
the design system at the same frequency. The resonance is implemented by including two additional 
states (α1, α2) which are excited by the pitch attitude oscillations θ. A similar resonance with states (β1, 
β2) is introduced in yaw and it is excited by the yaw attitude oscillations ψ. The roll axis doesn’t need 
it as much. When these states are properly penalized in the LQR optimization they will provide further 
attenuation in the pitch and yaw oscillations. We are essentially increasing the effectiveness of the 
control system at a certain frequency in order to attenuate known disturbances. 
 
4.1 Flixan Models 
 
The files for this analysis are in directory: “Flixan\Control Analysis\LQG\Examples\Space-Station w 
CMG2\Design-2”. The Space Station parameters are defined in the input file “Space_Station.Inp” 
which includes two flight vehicle datasets: a rigid-body “Space Station with Double-Gimbal CMG 
Array (Rigid)”, and a flexible model with 34 structural modes “Space Station with Double-Gimbal 
CMG Array (Flex)”. The already selected and scaled modes are in dataset “Space Station with Double-
Gimbal CMG Array, 34 Flex Modes”. The “LVLH Attitude & Rate” flag is included in the flags line 
that defines the output attitude and rate relative to the LVLH frame. The rate states however are still in 
body. A batch set is included at the top of the input file with title “Batch for Large Flexible Space 
Station” and it is used for processing the entire input file fast. The systems and matrices created by the 
program are saved in file “Space-Station.Qdr”. 
 
BATCH MODE INSTRUCTIONS ............... 
Batch for Large Flexible Space Station                                                                  
! This batch set creates a models for a Space Station that is  
! controlled by an array of double-gimbal CMGs. Two models 
! are created, a rigid-body model and a flexible model using the  
! attached modal data. The design model is extracted from Rigid Vehicle 
! and the plant state is transformed so that it is equal to the Output, C=I 
! 
Retain Matrix    : State Weight Matrix Qc (16x16)                                                                         
Retain Matrix    : Control Weight Matrix Rc (3x3)                                                                        
! 
Flight Vehicle   : Space Station with Double-Gimbal CMG Array (Rigid)                                                                                          
Flight Vehicle   : Space Station with Double-Gimbal CMG Array (Flex)  
System Modificat : Space Station with Double-Gimbal CMG Array (Design Plant)       
System Modificat : Space Station with Double-Gimbal CMG Array (LVLH Plant)                                                                               
Transf-Function  : Oscillation Filter 
Transf-Function  : 3 Integrators 
System Connection: Augmented Design Plant   
LQR Control Des  : LQR Control Design for Augmented Space Station Model    
! 
To Matlab Format : Space Station with Double-Gimbal CMG Array (Rigid)                                                          
To Matlab Format : Space Station with Double-Gimbal CMG Array (Flex)                                                                          
To Matlab Format : Space Station with Double-Gimbal CMG Array (Design Plant)   
To Matlab Format : Space Station with Double-Gimbal CMG Array (LVLH Plant)  
To Matlab Format : Augmented Design Plant  
To Matlab Format : LQR State-Feedback Gain for Augmented Design Plant  
------------------------------------------------------------------------------------------------- 
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CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Space Station with Double-Gimbal CMG Array (Design Plant)                                        
Space Station with Double-Gimbal CMG Array (Rigid)                 
! Create the Station Design Model by Reducing the Rigid-Body Model      
! Inputs are the CMG Control Torques 
! Outputs are: LVLH attitude and rates, and CMG Momentum 
!                            
TRUNCATE OR REORDER THE SYSTEM INPUTS, STATES, AND OUTPUTS 
Extract Inputs :   1   2   3 
Extract States :   1   3   5   2   4   6  11  12  13 
Extract Outputs:   1   3   5   2   4   6  16  17  18 
------------------------------------------------------------------------------------------------------- 
CREATE A NEW SYSTEM FROM AN OLD SYSTEM... (Titles of the New and Old Systems) 
Space Station with Double-Gimbal CMG Array (LVLH Plant)                                        
Space Station with Double-Gimbal CMG Array (Design Plant)               
! Transform the design plant and make the States equal to the Outputs 
SYSTEM TRANSFORMATION, STATES EQUAL TO OUTPUTS 
------------------------------------------------------------------------------------------------------- 
 

The input file includes a system modification dataset “Space Station with Double-Gimbal CMG Array 
(Design Plant)” that creates the control design model by extracting a reduced number of inputs, states, 
and outputs from the rigid model. An additional transformation is needed because although the design 
plant attitude and rates are in the LVLH frame, some of the states, however, are still in the body frame. 
This transformation modifies the design plant and makes the states to be equal to the outputs which are 
LVLH attitudes and rates and the output matrix C= Identity. The dataset that performs this 
transformation is “Space Station with Double-Gimbal CMG Array (LVLH Plant)”. Notice that the 
transformation requires the design plant matric C to be square and invertible.  
 
SYSTEM OF TRANSFER FUNCTIONS ... 
Oscillation Filter 
! This Second Order Filter Amplifies the Oscillation Disturbance 
! for the LQR Optimization 
Continuous 
TF. Block #  1  Integrator a1                                    Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
TF. Block #  2  Integrator a2                                    Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
...................................................... 
Block #, from Input #, Gain 
      1             1       1.0 
........................... 
Block #, from Block #, Gain 
      2             1       1.0 
      1             2      -1.21e-6 
........................... 
Outpt #, from Block #, Gain 
      1             1       1.0 
      2             2       1.0 
........................... 
Definitions of Inputs  =   1 
Pitch Attitude (rad) 
  
Definitions of Outputs =   2 
Filter Output a1 
Filter Output a2 
------------------------------------------------------------------------------ 
 

The oscillation filter is a second order resonance that is tuned at the disturbance frequency ω0. It 
creates two additional states (α1, α2) which are used to penalize attitude oscillations at that frequency, 
in the LQR optimization. It is implemented as shown above by two integrators combined using the 
Flixan transfer functions combination utility. 
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SYSTEM OF TRANSFER FUNCTIONS ... 
3 Integrators 
! Used to calculate the CMG Momentum Integral for the LQR Optimization 
Continuous 
TF. Block #  1  Integrator x                                     Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
TF. Block #  2  Integrator y                                     Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
TF. Block #  3  Integrator z                                     Order of Numer, Denom=  0  1 
Numer 0.0         1.0 
Denom 1.0         0.0 
...................................................... 
Block #, from Input #, Gain 
      1             1       1.0 
      2             2       1.0 
      3             3       1.0 
........................... 
Outpt #, from Block #, Gain 
      1             1       1.0 
      2             2       1.0 
      3             3       1.0 
........................... 
Definitions of Inputs  =   3 
CMG Momentum-X  
CMG Momentum-Y 
CMG Momentum-Z 
  
Definitions of Outputs =   3 
CMG Momentum-X Integral 
CMG Momentum-Y Integral 
CMG Momentum-Z Integral 
------------------------------------------------------------------------------ 

 
The design model is now augmented by including 3 additional states, the (x, y, z) momentum integral 
in order to bound the CMG momentum from diverging and to keep it cycling near zero. Two attitude 
oscillation filters are also included in the augmented system to further attenuate the pitch and yaw 
attitude oscillations at orbital frequency. The momentum integrators are implemented as 3 transfer 
functions system by the transfer functions combination utility, shown above. The “Augmented Design 
Plant” is obtained by combining four systems as shown in Figure 10 using the Flixan systems 
combination utility. It is also implemented in the Simulink file “Augm_Vehicle.mdl”. In addition to the 
9 states of the original LVLH design plant, the augmented plant now includes the 3 momentum 
integral states and the four attitude filter states (2 pitch and 2 yaw).  
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INTERCONNECTION OF SYSTEMS ..... 
Augmented Design Plant 
! Augment the Design Plant by including the Momentum Integral and the  
! Oscillation Filters 
Titles of Systems to be Combined   
Title 1 Space Station with Double-Gimbal CMG Array (LVLH Plant)   
Title 2 3 Integrators 
Title 3 Oscillation Filter                                                                 Pitch Filter 
Title 4 Oscillation Filter                                                                 Yaw Filter 
SYSTEM INPUTS TO SUBSYSTEM  1 
Via Matrix +I3                                                                             3 CMG Torques 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  1                                                           9 Original States 
System Output  1 from Subsystem  1, Output  1, Gain= 1.0                                   3 LVLH Attitudes 
System Output  2 from Subsystem  1, Output  2, Gain= 1.0 
System Output  3 from Subsystem  1, Output  3, Gain= 1.0 
System Output  4 from Subsystem  1, Output  4, Gain= 1.0                                   3 LVLH Rates 
System Output  5 from Subsystem  1, Output  5, Gain= 1.0 
System Output  6 from Subsystem  1, Output  6, Gain= 1.0 
System Output  7 from Subsystem  1, Output  7, Gain= 1.0                                   3 CMG Momentum 
System Output  8 from Subsystem  1, Output  8, Gain= 1.0 
System Output  9 from Subsystem  1, Output  9, Gain= 1.0 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  2                                                           from Moment Integr 
System Output 10 from Subsystem  2, Output  1, Gain= 1.0                                   H-integr-X 
System Output 11 from Subsystem  2, Output  2, Gain= 1.0                                   H-integr-Y 
System Output 12 from Subsystem  2, Output  3, Gain= 1.0                                   H-integr-Z 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  3                                                           from Pitch Filter 
System Output 13 from Subsystem  3, Output  1, Gain= 1.0                                   a1 
System Output 14 from Subsystem  3, Output  2, Gain= 1.0                                   a2 
.............................................................................. 
SYSTEM OUTPUTS FROM SUBSYSTEM  4                                                           from Yaw Filter 
System Output 15 from Subsystem  4, Output  1, Gain= 1.0                                   b1 
System Output 16 from Subsystem  4, Output  2, Gain= 1.0                                   b2 
.............................................................................. 
SUBSYSTEM NO  1 GOES TO SUBSYSTEM NO  2                                                    to Momen Integrat 
Subsystem  1, Output  7 to Subsystem  2, Input  1, Gain=  1.0                              CMG Momentm-X 
Subsystem  1, Output  8 to Subsystem  2, Input  2, Gain=  1.0                              CMG Momentm-Y 
Subsystem  1, Output  9 to Subsystem  2, Input  3, Gain=  1.0                              CMG Momentm-Z 
...................................................................... 
SUBSYSTEM NO  1 GOES TO SUBSYSTEM NO  3                                                    to Pitch Filter 
Subsystem  1, Output  2 to Subsystem  3, Input  1, Gain=  1.0                              Pitch Attitude 
...................................................................... 
SUBSYSTEM NO  1 GOES TO SUBSYSTEM NO  4                                                    to Yaw Filter 
Subsystem  1, Output  3 to Subsystem  4, Input  1, Gain=  1.0                              Yaw Attitude 
...................................................................... 
Definitions of Inputs  =   3 
Roll CMG Momentum (ft-lb) 
Ptch CMG Momentum (ft-lb) 
Yaw  CMG Momentum (ft-lb) 
 
Definitions of Outputs =  16 
Roll Attitude  (phi-LVLH)  (radians)                                             
Pitch Attitude (thet-LVLH) (radians)                                             
Yaw  Attitude  (psi-LVLH)  (radians)                                             
Roll Rate      (p-lvlh)    (rad/sec)                                             
Pitch Rate     (q-lvlh)    (rad/sec)                                             
Yaw  Rate      (r-lvlh)    (rad/sec)                                             
CMG Momentum in X-axis (ft-lb-sec)                          
CMG Momentum in Y-axis (ft-lb-sec)                          
CMG Momentum in Z-axis (ft-lb-sec)   
CMG Momentum Integral X (ft-lb-sec^2)                          
CMG Momentum Integral Y (ft-lb-sec^2)    
CMG Momentum Integral Z (ft-lb-sec^2)    
Pitch Oscillation Filter Output (a1) 
Pitch Oscillation Filter Output (a2) 
Yaw   Oscillation Filter Output (b1) 
Yaw   Oscillation Filter Output (b2) 
------------------------------------------------------------------------------- 

 
The above dataset contains system interconnection instructions for implementing the augmented plant 
model shown in Figure 10. 
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The next dataset included in the input file is the “LQR Control Design for Augmented Space Station 
Model” which calculates the (3x16) state-feedback matrix Kpqr. The state and control weight matrices 
Qc and Rc are already included in file “Space_Station.Qdr”. The state-feedback matrix Kpqr is also 
saved in file “Space_Station.Qdr” and its title is “LQR State-Feedback Gain for Augmented Design 
Plant”. 
 
LINEAR QUADRATIC REGULATOR STATE-FEEDBACK CONTROL DESIGN                                                                                                                                                 
LQR Control Design for Augmented Space Station Model                                                                                                                                       
Plant Model Used to Design the Control System from:        Augmented Design Plant                                                                                                              
Criteria Optimization Output is Matrix C                                                                                                                                                                 
State Penalty Weight (Qc) is Matrix:   Qc16                State Weight Matrix Qc (16x16)                                                                                                                 
Control Penalty Weight (Rc) is Matrix: Rc3                 Control Weight Matrix Rc (3x3)                                                                                                                                                             
Continuous LQR Solution Using Assymptotic Method                                                                                                                                                                
LQR State-Feedback Control Gain Matrix Kpqr                LQR State-Feedback Gain for Augmented Design Plant                                                   
-------------------------------------------------------------------------------------------------------------- 

 
Six Matlab conversion datasets are also included that convert the systems and matrices in an m-file 
format that can be loaded into Matlab by running the script file start.m. The files “vehicle_rigid.m” and 
“vehicle_flex34.m” are used in simulations. The augmented plant “augm_plant.m” can also be used in 
Matlab to calculate the state-feedback matrix Kpqr. 
 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Space Station with Double-Gimbal CMG Array (Rigid) 
System 
vehicle_rigid 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Space Station with Double-Gimbal CMG Array (Flex) 
System 
vehicle_flex34 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Space Station with Double-Gimbal CMG Array (Design Plant) 
System 
design_plant 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Space Station with Double-Gimbal CMG Array (LVLH Plant) 
System 
lvlh_plant 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
Augmented Design Plant 
System 
augm_plant 
------------------------------------------------------------------------------------------------------- 
CONVERT TO MATLAB FORMAT ........      (Title, System/Matrix, m-filename) 
LQR State-Feedback Gain for Augmented Design Plant 
Matrix Kpqr 
------------------------------------------------------------------------------------------------------- 

 
4.2 LQR Control Design with Filters 
 
The initialization file “start.m” loads the dynamic systems and matrices for the simulation and analysis 
models. In addition to Flixan, the Matlab script file “des.m” can also calculate the LQR control gains. 
It is using the augmented design plant or the Simulink model “Augm_Vehicle.mdl” shown in Figure 10, 
which includes the spacecraft LVLH dynamics of Equation 1, the momentum integral states, and the 
two attitude filters. The state vector of the augmented design plant includes the 4 filter states (α1, α2, 
β1, β2) and the augmented 16-state system is now applied in the LQR optimization algorithm. The 
disturbance accommodation filters will penalize the attitude oscillations at orbital rate and ultimately 
provide further attenuation at that frequency.  
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Figure 10 Augmented Design Plant “Augm_Vehicle” Consists of Equations 1, Momentum Integrals and the Pitch 
and Yaw Attitude Augmentation States (α1, α2) and (β1, β2) 
 
Figure 11 shows the simulation model “Sim_Lin_TEA-Flex.mdl” that includes the Flixan generated 
system “vehicle_flex34.m” with 34 flex modes. It includes also the two second order attitude 
augmentation filters which are now part of the control system and produce the 4 additional states: 
(α1, α2, β1, β2) required for state-feedback. The rate gyro measurements from the dynamic model are 
body rates and they measure structural flexibility. A transformation is used to convert the rate signals 
to LVLH rates as expected for feedback. The spacecraft model also includes the CMG dynamics 
implemented as second order transfer functions and the aerodynamic disturbances, as in Fig.4.  

 
Figure 11 Flex Simulation Model “Sim_Lin_TEA-Flex.mdl” 
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4.3 Simulation Results 
 
The simulation results in Figure 12 show the Space Station response to the aerodynamic disturbances 
as its attitude drifts towards the TEA where the external torques balance in all directions. At steady-
state the pitch attitude converges to 6.3º and the yaw attitude to 3º relative to the LVLH frame. The roll 
attitude is small at -0.5⁰. The CMG momentum does not diverge but it oscillates about zero without 
bias as the CMGs are supplying torque to counteract the cyclic disturbances. The CMG torque is also 
centered at around zero. The augmented state-feedback not only stabilizes the spacecraft but it also 
attenuates the ωo attitude oscillations in pitch and yaw and produces a closed loop system that is 
resisting the disturbances at orbital rate without the need to increase the control system bandwidth. In 
pitch the only remaining oscillation is due to the aero disturbance at 2ωo. The yaw attitude is almost 
perfectly clean from oscillations. Additional filters can be included to attenuate the 2ωo frequency but 
we leave this as an exercise for the reader. 
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Figure 12 Spacecraft Response to Disturbances from Simulink Model “Sim_Lin_TEA_Flex.mdl” 
 
4.4 Stability Analysis 
 
The Simulink model “Open_Lin_TEA_Flex.mdl” is used to calculate the frequency responses of the 3 
loops system by opening one loop while keeping the other two closed. The loop is opened at the CMG 
control torque. It is shown in Figure 13 configured for roll axis analysis. The Matlab script m-file 
“freq.m” is using this model to calculate the Bode and Nichols plots. 
 
Figures 14, 15 and 16 show the stability analysis results obtained from the open-loop model, one loop 
opened at a time. This system has a low bandwidth of 10ω0. Notice that the filters introduced a big 
resonance at orbital frequency ω0=0.0011 (rad/sec) which increases the gain of the system only at that 
frequency. The increased magnitude is needed in order to provide the torque that will counteract the 
disturbance at that frequency without increasing the overall system gain that would otherwise amplify 
the flex modes to instability. 
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Figure 13 Simulink Model “Open_Lin_TEA_Flex.mdl” Used to Calculate the Frequency Responses and Analyze 
Stability 
 
5. Conclusion 
 
The LQR method was used to design state-feedback control system for the space station that uses 
gravity gradient to prevent the CMG momentum from saturating but it is cycling at around zero while 
it provides the torque necessary to counteract aerodynamic disturbances. The spacecraft attitude is not 
commanded but it drifts and slightly oscillates about the TEA. Filters are used to amplify the system’s 
response at the disturbance frequency, counteract the disturbance effect, and to minimize the attitude 
oscillations. 
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Figure 14 Roll Axis Bode and Nichols Plots showing Flexibility and Stability Margins 
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Figure 15 Pitch Axis Bode and Nichols Plots showing Flexibility and Stability Margins 
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Figure 16 Yaw Axis Bode and Nichols Plots showing Flexibility and Stability Margins 
 



 

The frequency response analysis program calculates the frequency response of a system that is 
described in state-space form by a set of four matrices (A,B,C,D), either continuous or discrete at fixed 
sampling rate. It can display the frequency responses in Bode, Nichols and Nyquist plots. The systems 
are read from a typical systems file (*.Qdr) containing multiple systems, and the frequency responses 
are saved in a file with extension (*.Frq). The program includes many options. One of the options 
employs a variable frequency step feature for calculating smooth Nichol's and Nyquist plots which is 
useful in analyzing stability of systems that have very low damped resonances such as structural or 
slosh modes. It can also overlay multiple curves on the same plot for comparison.  
 
The options are selected graphically using the mouse and menus. Multiple frequency responses can be 
calculated and saved in the same (.Frq) file for various systems and from different inputs and outputs. 
The user may point the cursor and read data at specific points on the locus, focus in a smaller area to 
view details which are otherwise not visible in a larger scale, or expand in a larger area. The program is 
also used to analyze the existence of limit-cycles in non-linear systems by overlaying the inverse of the 
describing function of the non-linearity on a Nichols or Nyquist plot. 
  

 
Figure 1 Frequency Response Analysis Program 

  



Program Overview 

The frequency response program consists of two parts: the frequency response calculation program, 
and the graphical analysis program that post-processes the frequency response data and generates 
different types of plots on the screen. 

Frequency Response Calculation: The frequency response calculation program reads the state-space 
matrices from the systems file (xxx.Qdr), where the filename “xxx” typically describes the flight vehicle. 
It calculates the frequency responses of more than one system between specific inputs and outputs, 
and it saves the frequency response data in file (xxx.Frq). The input system is either continuous system 
(s-plane) described by a set of four state-space matrices or a discrete system (z-plane) described by 
four state-difference matrices. In addition to the quadruple matrices, the program also reads the 
sampling period (δt), and the system title. If the system is continuous (δt=0). Some of the program 
options are initialized from a settings table that includes some default values. For example, two 
algorithms are available for calculating the system’s frequency response. The user may adjust the 
initialization settings before proceeding with the frequency response calculation. Other parameters to 
adjust are: the frequency range, the number of points etc. There is also a variable frequency step (VFS) 
option for generating smooth Nichol's and Nyquist plots. This option is important for measuring phase 
and gain margins in systems that have low damped resonances, such as structural or slosh modes. The 
program saves the frequency response data in file xxx.Frq and calls the graphics processor to plot the 
frequency data on the screen. 

Graphics Post-Processor: The graphics processing program reads the frequency response data from 
one or two (.Frq) files and plots it on the screen in three different forms. From the options menu, the 
user may choose to display the data in Bode, Nichol's, or Nyquist plots. The post-processing program 
either plots one curve from one file, or it can overlay two frequency response curves on the same plot 
from two separate frequency response files. The first curve from the first file, x1.frq, appears in blue. 
The second overlay curve from a second file x2.frq appears in red. The two sets of data from the two 
files must be compatible with each other for overlay in terms of frequency range. The graphics post-
processor allows the user to display the frequency response data in the user desired form. The user 
may point the cursor on the locus and read the gain, phase, and frequency at that point. With the 
mouse you may also focus in a smaller area of the plot and magnify that area in order to observe more 
details there.  

The graphics processor is also used to analyze stability of non-linear systems and evaluate the 
existence and size of limit-cycles by using the Describing Function (DF) method. The system’s frequency 
response is calculated across the non-linearity and the inverse of the DF is plotted in the same Nichols 
or Nyquist diagram. The user must provide the DF of the non-linearity in a separate file that has an 
extension (.DF). This file contains: the gain and phase of the fundamental non-linearity output 
calculated at different sinusoidal input amplitudes. The DF is either obtained analytically or 
experimentally using Simulink models. See examples for details. 



Program Files 

The frequency response analysis program uses three different types of files: 

Standard Flixan systems file (.Qdr): This file contains the state-space systems to be analyzed. The 
systems are either continuous or discrete. The program only reads data from this file. The systems are 
generated either from a modelling program, transfer functions interconnections, or by the systems 
interconnection program. The systems file is associated with a certain vehicle analysis and it may 
contain several systems to be analyzed. The user must select one system at a time to be analyzed and 
specify the input/ output path. When the program completes the frequency response calculation of a 
system, another input/ output path or another system can be selected for analysis from the same file, 
and the process is repeated. 

Frequency Response File (.Frq): The program generates a frequency response data file that has an 
extension (.Frq). This file is also used as input to the graphics post-processor. The first part of the 
filename is identical to the systems file. Only the extension is different. The graphics program can 
accept one or two frequency data files, but when two files are used the data must be compatible for 
overlay (same frequency range and number of points). Each frequency file may contain more than one 
set of frequency response data that are generated in a single process from one systems file (.Qdr).  

The first line of each frequency data-set includes the number of the system’s inputs and outputs, and 
also some parameters which are passed to the post-processing program. The second line above the 
frequency data includes the system title, which is the same as the title that appears in the systems file 
above the system quadruples. The input and output numbers across which the system's frequency 
response was calculated, including short input/ output definitions are also included below the title, and 
the number of frequency points. 

The frequency response file consists of five columns of data. The first column contains the frequencies 
in (rad/sec), the second and third columns consist of the real and the imaginary parts of the transfer 
function, the third column includes the Gain in (dB), and the fifth column is the system's phase in 
(degrees). The first three characters on the left side of the frequency file contain reference numbers 
used by the graphics post-processor to locate and read the appropriate data, and also to navigate 
forwards and backwards in the frequency data file. 

1  Number of Inputs= 6    Outputs= 14      M-Circle, Gain and Phase Margins:  2.00    8.00    40.0     
   Plant Model, Vehicle/Actuators/Sensors (Z-Transform T=0.002)                                         
2  Frequency Response for the following Transfer Function path 
   Output(  2)-Roll Rate to FCS          / Input(  1)-Roll FCS Command (DP-TVC)  ; Decades= 5 
5 
    NPT= 8000 OMEGA         X             Y          GAIN(DB)    PHASE(DEGR) 
      1  0.100000E-02 -0.701176E+00 -0.222287E+01  0.735022E+01 -0.107507E+03 
      2  0.100340E-02 -0.705218E+00 -0.222950E+01  0.737828E+01 -0.107553E+03 
      3  0.101358E-02 -0.717412E+00 -0.224932E+01  0.746175E+01 -0.107690E+03 

  



The Describing Function File (.DF): This file is only included when analyzing stability of non-linear 
systems using the DF method. It contains the title of the non-linearity followed by the DF data. That is: 
in the first column we have the amplitude of the sinusoidal that is applied to the non-linearity, and in 
the second and third columns we have the gain and phase of the fundamental frequency coming out of 
the non-linearity for the corresponding input amplitude. The DF is either obtained analytically or 
experimentally using Simulink models.  

User defined Non-Linearity 
Amplitude Gain      Phase (deg) 
0.1000 0.5000 0.0000 
0.1250 0.5300 0.0000 
0.1750 0.6000 0.0000 
0.2000 0.6300 0.0000 
0.2250 0.6700 0.0000 
0.2750 0.7500    -0.5000 
0.3000 0.8000    -1.0000 
0.3200 0.7800    -2.0000 
 

Program Options 

After selecting the systems file and then one 
of the systems to analyze, the program 
requires some options to be selected by the 
user and the defaults are shown in the 
following menu. 

1. The number of points to be included in 
the frequency response calculation, it 
should be less than 20,000 points. 

2. The program provides two methods for 
calculating the system’s frequency 
response. Method #1 is significantly 
faster than method #2. We recommend 
using the default method #1 because it is 
faster. Use method # 2 as a backup.  

3. The next option defines the accuracy of 
the frequency response calculations that you want to obtain. The program computes the poles and 
zeros of the system between a specified input and a specific output. When the poles and zeros are 
very close together, their influence on the frequency response is negligible and canceling them out 
simplifies the calculations. The amount of cancellation between poles and zeros depends on a 
number (n) that must be entered. This number must be in the range 7-10, depending on the 
amount of cancellation desired. The number (n) defines the cancellation distance d between poles 
and zeros, (d=10 -n). If there is a pole/ zero pair that are closer together than d, they will cancel out 



and they will not affect the calculations. If the transfer gain between a system’s input and output is 
very small, we recommend that you increase the value of n to 12 or 14. However, if the system to 
be analyzed has a very low gain or very high gain, i.e. the magnitudes of the elements of matrices 
B,C,D are very small (in the order of 10 -9 or less), or very high (10+9 or more), we recommend that 
you scale this system up or down accordingly before analyzing it. This is a good practice in almost 
every application.  

4. The next option is used for calculating a multivariable (MIMO) frequency response. That is, from 
multiple inputs to multiple outputs. The default selection is SISO, that is, one input/ output pair at a 
time. The only time that you would choose the MIMO option is when you want to allow the 
program to automatically compute frequency responses between multiple inputs and multiple 
outputs in one batch, that is, from every input to every output. This is useful when performing 
multivariable frequency response analysis such as "Inverse Nyquist Arrays". When you select the 
multivariable option the program will ask you to select the input numbers and the output numbers 
of the system that you want to compute the MIMO frequency response. Note that in order to apply 
the INA method the number of inputs must be equal to the number of outputs, so the program 
assumes that they are equal.  

5. The next initialization option is applies only in discrete-time systems and it has to do with the 
option of including or not the dynamic effect of the zero-order-hold in the frequency response 
computations. The zero-order-hold will introduce some additional phase delay and attenuation 
especially at frequencies near the Nyquist frequency. The default zero-order-hold value is “include” 
and it must be included when performing open-loop calculations for stability analysis. 

6. The user must also specify the frequency range by entering the initial and final frequencies.  
7. The next option is for defining the frequency step size in the frequency response computation. 

When the selection is “Fixed”, which is the default, the frequency step will be defined from the 
number of points and the specified frequency range. If the selection is “Variable”, a variable 
frequency step (VFS) is selected. This option is useful for generating smooth and nice looking 
Nichols and Nyquist curves by spreading the points evenly to maintain an nearly constant 
resolution. The VFS option allows the frequency step between computations to vary according to 
gain and phase variation. When the gain and phase do not change significantly with frequency, 
such as at very low frequencies, the frequency step is increased. When the gain and phase begin to 
change more rapidly with frequency, such as at low damped resonances, the frequency step is 
reduced. The relative step size is adjusted by the resolution parameter that must be entered by the 
user. The default value is 0.6. The disadvantage of using the VFS option is that it may require 
several attempts to cover the specified frequency range by adjusting the resolution parameter.  

8. There is a third option for defining the frequency points in the frequency calculation and that is to 
use the same frequency points as those defined from a previously calculated (.Frq) file. This is 
useful when overlaying frequency data obtained from similar systems and you want them to be in 
the same frequency range and include the same number of points at the same frequencies, 
especially when the first file is calculated using the VFS option. In order to activate this option you 
must select the (.Frq) file from the menu shown in the initialization menu above. 



9. Finally, the initialization parameters include the user defined gain and phase margins that are used 
for plotting the area to avoid rectangle around the critical point. The Nichols locus must avoid this 
rectangle in order to satisfy the required gain and phase margins. The size of the M-circle is also 
defined which plays a similar role in the Nyquist diagrams. 

Running the Frequency Response Program 

We will demonstrate the frequency response analysis program using two examples. The first example 
calculates responses of several systems from a systems file, and the second example demonstrates the 
use of the variable frequency step and overlaying two frequency response files. 

Example 1 Frequency Response Calculations from Multiple Systems 

Our first example is in folder “C:\Flixan\Frequ\Examples\Ex1”. We will calculate and plot frequency 
responses of systems which are located in systems file “Stg2_Damper.Qdr”. Start the Flixan program, 
select the project directory and from the main menu select “Program Functions”, “Frequency Control 
Analysis”, and then “Frequency Response Analysis”. The following is an introduction dialog and click 
“Continue”. Select also the systems file from the next menu and click “OK”. 

 



The systems file contains several systems. Using the systems selection menu below, select one of the 
system titles “Shuttle Main Engine Hydraulic Actuator (Type-I)” and click on “Select”. Use the dialog 
below to set the initialization parameters for the actuator frequency response calculations, as shown, 
and click “OK”. 

 



You must now define the actuator system’s input and output across which the program will calculate 
the frequency response. Select first the “Nozzle Command” input and the “Nozzle Deflection” output, 
and click “OK”. The program calculates the frequency response for the selected input/output pair and 
asks the user if he wishes to calculate another frequency response for another input/output pair. Click 
on “Yes” and calculate the frequency response between the “Load-Torque” input and the “Nozzle 
Gimbal Acceleration” output, as shown.  

 



When you finish, answer “No” that you don’t wish to calculate another frequency response using this 
actuator system. You would like, however, (answer “Yes” below) to calculate the frequency response 
of another system from the same file, and from the following menu select the system “Plant Model, 
Vehicle/ Actuators/ Sensors”, and click “Select”. 

 

  



The following dialog is used to set the parameters in the calculation of the frequency response of the 
“Plant Model” system. We are using 10,000 points because this system has a lot of structural and slosh 
modes. 

 

 

  



We will use this Plant Model system to calculate three frequency responses for the Roll, Pitch and Yaw 
axes, as shown below. In the menus below select the input and output for the roll axis. Click on “OK”, 
and in the next dialog click on “Yes” to select another input/output pair for the pitch axis. 

 

  



In the next dialog select the input and output for the pitch axis. Click on “OK”, and in the next dialog 
click on “Yes” to select another input/output pair for the yaw axis. 

 

 

  



Select an input/output pair for the yaw axis and click on “No” that you don’t want to compute another 
frequency response using the Plant Model system. In the next dialog answer “Yes” to select another 
system for frequency response analysis. This time select “Shuttle Stage-2 Continuous Flight Control 
System” and use the next dialog to set the program parameters as before. 

 



 



We will now analyze the discrete Shuttle flight control system and calculate the three frequency 
responses between roll, pitch and yaw attitude errors and the flight control system outputs. 

 

 

  



 

Click on “No” in both of the above dialogs and the program will plot the frequency response data which 
are saved in file “Stg2_Damper.Frq”.  

  



Click “OK” in the menus below without selecting any files because you don’t want to overlay any data 
from another previously calculated (.Frq) file or from a “Describing Function” file. 

 

The following menu is used for plotting the frequency response data in Bode, Nichols, and Nyquist 
formats. The frequency response data is read from file “Stg2_Damper.Frq” which contains multiple 
sets of frequency data from various systems. The user can advance to the next set or go back to 
previous sets. 

 

  



There is a menu located above each plot that is used to perform several functions. The first two 
options are used for selecting drivers for different output formats or for sending the plot to the printer. 
The “Rescale Plots” option has a drop-down menu used for adjusting the size of the plots, focusing in 
smaller areas or expanding the scales size to cover a larger area. You may also advance and plot the 
next set of frequency data or return to the main menu to choose a different plotting option. 

 

 

The following plots were obtained from the frequency response calculations described, beginning with 
two frequency responses from the actuator system, three responses from the Plant Model, and three 
responses from the Flight Control System. In separate plots below the regular Bode plots of the Plant 
Model, the regions around the flex modes are also shown expanded and in a linear scale. Those plots 
were obtained using the “Magnify a Selected Region” option from the menu. The peaks of the 
resonances are also labeled by clicking with the cursor on the actual locus. 

The last three sets of plots show the frequency responses of the flight control system during second 
stage for the roll, pitch, and yaw axes calculated between the attitude error inputs and the control 
system outputs. They are presented in Bode and Nyquist plot formats. 

  



 



  



 



 



 



 



 



Example 2 Variable Frequency Step/ Overlay 

Our second example is in folder “C:\Flixan\Frequ\Examples\Ex2”. In this example we will calculate the 
frequency response of two similar systems and place them in two separate (.Frq) files in order to 
overlay them in the same plots for comparison. The two systems represent the open-loop dynamics of 
the Shuttle vehicle with structural flexibility and propellant sloshing. The actuator, sensor, and control 
system dynamics are included in the models. The loops are opened in the pitch axis and they will be 
used for pitch stability analysis. The only difference between the two systems is that the first one is a 
continuous system that includes a continuous controller, but the second system is discrete that 
includes a discrete controller. The sampling period of the second system is 40 msec. We will calculate 
the frequency response of the continuous system 
and save the response in file vfs1.frq. Then we will 
calculate the response of the discrete system and 
save the response in file vfs2.frq. Then we will plot 
the responses from both systems together to 
show that the discrete system has some additional 
attenuation and more phase-lag at high 
frequencies.  

Start the Flixan program, select the project 
directory and from the main menu select 
“Program Functions”, “Frequency Control 
Analysis”, and then “Frequency Response 
Analysis”. The following is an introduction dialog 
and click “Continue”. Select also the systems file 
“Stg2_Damper.Qdr” from the next menu and click 
“OK”.  

 

 



 

From the systems selection menu below, select the continuous system title “Pitch Open-Loop Model (s-
plane)” and click on “Select”.  

 

Use the dialog below to set the initialization parameters for the frequency response calculations of the 
continuous system, as shown, and click “OK”. Notice that the variable frequency step (VFS) option is 
selected and the number of points are 10,000.  

 



  

From the following input/ output selection menu, select the single input and the single output to 
calculate the frequency response of the system that has the loop opened at the input of the pitch 
actuator, and click “OK”. 

 

  



When VFS is selected the algorithm adjusts the frequency step in order to generate smooth Nichol's 
and Nyquist plots. This feature is useful when analyzing systems that include low damping resonances 
such as slosh and structural modes. The smoothness of the Nichol's and Nyquist plots depends on the 
number of points used. If only a few points are used the modes will appear like polygons instead of 
circular. The VFS algorithm is attempting to adjust the frequency step between calculations in order to 
keep a certain variable as close to the resolution parameter as possible. This criterion variable is a 
combination of three terms {δ(phase) + δ(gain) + K δ(frequency) }. That is, a change in gain, phase, and 
frequency which is maintained almost constant between subsequent calculations.  
 
It is not easy to set the frequency range exactly as desired when using the VFS option and several 
attempts are needed in order to achieve the specified final frequency. The resolution parameter 
controls the spacing between the frequency points and it is typically set between (0.4 and 0.9). If the 
value of the resolution parameter is small there will be more points used to describe each resonance 
and the final frequency for a fixed number of points will be small. When a large resolution is used there 
will be less points used per resonance, and the final frequency will be higher than expected for the 
same number of points. The frequency range is, therefore, controlled by selecting the proper 
resolution parameter value depending on the number of modes and the number of points selected. 
This may require several trials of adjusting the resolution parameter in order to cover the desired 
frequency range. 
 
The program will assist the user in the process of selecting the resolution parameter. For example, if 
you begin with a resolution value of 0.6, and if the final frequency is a lot smaller than the specified 
range, the program will ask you to increase the resolution parameter. If the final frequency exceeds the 
specified final frequency by a significant amount, the program will ask you to reduce the resolution and 
repeat the process. The frequency at the final point will be acceptable when it falls close to 80% of the 
specified final frequency, otherwise, you will be prompted to adjust the resolution parameter. In this 
case the resolution parameter was reduced to 0.35 in order to get near the specified final frequency 
which is 100 (rad/sec). 

 
  



 

Click on “No” in both of the above dialogs and the program will plot the frequency response data which 
are saved in file “Stg2_Damper.Frq”. This file is also saved under a different name “vfs1.frq” to avoid 
being overwritten. 

Do not plot the data yet but repeat the frequency response calculation process as before, by selecting 
the same systems filename “Stg2_Damper.Qdr” and then from the systems selection menu, select the 
discrete system title “Pitch Open-Loop Model (z-plane)” and click on “Select”. 

 



Initialize the frequency response calculations parameters for of the discrete system, as shown below, 
and click “OK”. Notice that this time we are going to use the same frequency points that were used in 
the previously calculated file “vfs1.frq”. Then from the following menu select the single input and the 
single output of that system. 

 



 

Click on “No” in both of the above dialogs and the frequency response data will be saved in file 
“Stg2_Damper.Frq”. This file is also saved under a different name “vfs2.frq” to avoid being overwritten. 
You may now plot the frequency response data from the two files. Go to the Flixan main menu and 
select “Program Functions”, “Frequency Control Analysis”, and then “Plot Frequency Response Data”.  

 

From the top two menus of the following dialog select the two files “vfs1.frq” and “vfs2.frq” containing 
the frequency responses of the two systems and click “OK”. The third menu is used for selecting a 
Describing Function file which is applicable only for non-linear system analysis. Use the main menu of 
the post-processing program to generate Bode, Nichols, and Nyquist plots as shown. 



 



 

  



 



 

Notice how the discrete system’s response (magenta colour), although similar in nature, it has some 
additional phase-lag and attenuation which is more observable at high frequencies. It is caused mainly 
by the zero-order-hold. Notice also that one of the structural modes, at 9 (rad/sec) is unstable because 
it encircles the critical point. This is noticeable in both Nichols and Nyquist plots. If not attenuated, this 
structural mode will create divergent structural oscillations at 9 (rad/sec). This can be observed in 
closed-loop simulations. 

  



Example 3 Describing Function Analysis 

In this example we will use the Describing Function (DF) method to analyze the structural stability of 
the Space Shuttle payload. The Shuttle is carrying a flexible payload which is rigidly attached to the 
cargo bay at aft end. The front section of the payload, however, is attached to the cargo bay by means 
of two Coulomb Dampers which are non-linear devices, as shown in Figure 1. The purpose of the 
Coulomb Dampers is to attenuate oscillations and to reduce disturbances on the payload by dissipating 
structural energy. 

 

Figure 3.1 Payload is rigidly attached to the Shuttle on one side and on the other side it is attached to the Cargo Bay by 
two Coulomb Dampers 

In this example we will analyze the dynamic interaction between the flexible structure and the non-
linear Coulomb dampers by frequency domain analysis and simulation. We will use the Describing 
Function (DF) method to estimate the size and frequency of the limit-cycles caused by the non-linear 
devices, and simulations to validate the stability analysis. The files for this Shuttle second stage analysis 
example are located in directory “C:\Flixan\Frequ\Examples\Ex3”. The input data file is 
“Damper_DF.Inp” and the systems file is “Damper_DF.Qdr” containing the vehicle state-space systems. 
The DF of the Coulomb damper is already calculated and saved in file “Coulomb.DF”. 

The systems file includes the system “Pitch DF Analysis Model (s-plane)”. This system consists of the 
flexible vehicle, sensor and actuator dynamics and the flight control system with the 3 loops closed, as 
shown in the block diagram Figure 3.2. The mechanical loop, however, across the damper is opened for 
frequency response analysis. This system is used for analyzing stability in the pitch direction by exciting 
and measuring the structural modes symmetrically. The input is force applied across the left and right 
damper in (lb), and the output is the average displacement across the two dampers. A similar model is 
used for analyzing stability in the anti-symmetric direction by applying equal and opposite forces on 
the left and right dampers and measuring the differential displacements of the two dampers. This 
example is presented in more detail in “Flixan\Examples\Payload Damper”. 



 

Figure 3.2 Pitch DF Analysis Model; The Flight Control Loop is Closed and the Loop is Opened across the Dampers 

Start the Flixan program, select the project directory and from the main menu select “Program 
Functions”, “Frequency Control Analysis”, and then “Frequency Response Analysis”. From the systems 
filename selection menu select the systems file “Damper_DF.Qdr”, and click “OK”.  

 

 

  



 

From the following menu select the system “Pitch DF Analysis Model (s-plane)”. This system has the 
flight control loops closed, as already described in Figure 3.2, and the mechanical loop across the 
damper is opened for frequency response analysis. Click on “Select” and the parameters initialization 
dialog opens up, as shown below. Use the variable frequency step with 10,000 points to obtain smooth 
resonances. Then select the only one input and the only one output corresponding to the force on the 
vehicle generated by the damper and the displacement across the damper. 

 



 
  



 
 

 

 
 
Do not calculate any more frequency responses from other systems. From the following filename 
selection menus do not select another frequency response file, but select the non-linearity file 
“Coulomb.DF” that includes the DF data for the Coulomb damper and click on “OK”. This file includes 
sinusoidal input amplitude in (feet) versus gain, and phase in (deg). 
 



 
 
Figure 3.3a shows the Bode frequency response of the symmetric closed-loop plant Gs(s) calculated 
across the Coulomb damper non-linearity. The excitation forces in (lb) are applied on the vehicle 
structure in phase at the two damper attachments in order to excite the pitch flexibility. The output of 
Gs(s) is the average displacement at the two dampers. It shows that the structure has two big 
resonances at around 9 (rad/sec). The Nichols plot in Figure 3.3b shows the overlay of two loci, the 
symmetric system Gs(jω) co-plotted with the inverse of the damper DF which is -1/N(a). The -1/N(a) 
locus is shown twice because it repeats every 360° similar to the (+) point in the classical Nichols 
charts. The intersections indicate that according to the Nyquist criteria there is a convergent limit cycle 
at 10.5 (rad/sec) indicating that the system will maintain a symmetric oscillation at 10.5 (rad/sec) at an 
amplitude of 0.004 (ft). There is also a convergent limit-cycle at a lower amplitude of 0.0013 (feet) 
which is at 9.78 (rad/sec) frequency. This intersection point is in the vertical ±180° section of the 1/N(a) 
describing function locus which corresponds to the device operating in the spring/ dead-zone region 
before breakout. The amplitude of the Coulomb damper oscillation (zero to peak) is obtained from the 
amplitude of the DF locus at the intersection with the plant Gs(jω) locus. There is also a divergent 
(shown in green) intersection point between the two convergent limit-cycles. The loci are almost 
touching at a higher frequency which indicates the possibility of a limit cycle at 24 (rad/sec). However, 
it is of low amplitude and its existence is questionable. 
 
The same conclusions are obtained by analyzing the Nyquist diagram in Figure 3.4. The region around 
the intersections between the loci is expanded in Figure 3.4b to highlight the convergent and divergent 
limit-cycles. The existence of the limit-cycles is confirmed by time-domain simulations. For more details 
read the “Shuttle Coulomb Damper” example in directory “Flixan\Examples\Payload Damper”. 



 

Figure 3.3 Bode and Nichols Plots across the Coulomb Damper Non-Linearity 



 

Figure 3.4 Nyquist Plot across the Coulomb Damper Non-Linearity 
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